metadata
license: mit
library_name: peft
tags:
- parquet
- text-classification
datasets:
- ag_news
metrics:
- accuracy
base_model: roberta-base
model-index:
- name: roberta-base-finetuned-lora-ag_news
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: ag_news
type: ag_news
config: default
split: test
args: default
metrics:
- type: accuracy
value: 0.9402631578947368
name: accuracy
roberta-base-finetuned-lora-ag_news
This model is a fine-tuned version of roberta-base on the ag_news dataset. It achieves the following results on the evaluation set:
- accuracy: 0.9403
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
accuracy | train_loss | epoch |
---|---|---|
0.1779 | None | 0 |
0.9337 | 0.2512 | 0 |
0.9370 | 0.1915 | 1 |
0.9392 | 0.1761 | 2 |
0.9403 | 0.1650 | 3 |
Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.2