Edit model card

99-v9

This model is a fine-tuned version of Trelis/SmolLM-135M-Instruct-layer-pruned-90M-raw on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7495

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.005
  • lr_scheduler_warmup_steps: 89
  • training_steps: 17894

Training results

Training Loss Epoch Step Validation Loss
0.6331 0.0500 894 0.6004
0.5667 0.0999 1788 0.5463
0.5423 0.1499 2682 0.5138
0.5749 0.1998 3576 0.7377
0.5378 0.2498 4470 0.7542
0.506 0.2998 5364 0.7902
0.5561 0.3497 6258 0.7810
0.5259 0.3997 7152 0.7914
0.5516 0.4496 8046 0.7611
0.5131 0.4996 8940 0.6860
0.5069 0.5496 9834 0.7247
0.4977 0.5995 10728 0.7375
0.4976 0.6495 11622 0.7436
0.5018 0.6995 12516 0.7520
0.537 0.7494 13410 0.7613
0.5018 0.7994 14304 0.6922
0.4891 0.8493 15198 0.7322
0.4808 0.8993 16092 0.7430
0.5231 0.9493 16986 0.7546
0.5103 0.9992 17880 0.7495

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
88
Safetensors
Model size
99.1M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Trelis/99-v9