|
--- |
|
base_model: TechxGenus/CursorCore-QW2.5-7B |
|
library_name: transformers |
|
license: apache-2.0 |
|
pipeline_tag: text-generation |
|
tags: |
|
- code |
|
- llama-cpp |
|
- gguf-my-repo |
|
--- |
|
|
|
# Triangle104/CursorCore-QW2.5-7B-Q4_K_M-GGUF |
|
This model was converted to GGUF format from [`TechxGenus/CursorCore-QW2.5-7B`](https://huggingface.co/TechxGenus/CursorCore-QW2.5-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/TechxGenus/CursorCore-QW2.5-7B) for more details on the model. |
|
|
|
--- |
|
Model details: |
|
- |
|
CursorCore: Assist Programming through Aligning Anything |
|
|
|
CursorCore: Assist Programming through Aligning Anything |
|
Introduction |
|
Models |
|
Usage |
|
1) Normal chat |
|
2) Assistant-Conversation |
|
3) Web Demo |
|
Future Work |
|
Citation |
|
Contribution |
|
|
|
Introduction |
|
|
|
CursorCore is a series of open-source models designed for AI-assisted programming. It aims to support features such as automated editing and inline chat, replicating the core abilities of closed-source AI-assisted programming tools like Cursor. This is achieved by aligning data generated through Programming-Instruct. Please read our paper to learn more. |
|
|
|
conversation |
|
|
|
CursorWeb |
|
Models |
|
|
|
Our models have been open-sourced on Hugging Face. You can access our models here: CursorCore-Series. We also provide pre-quantized weights for GPTQ and AWQ here: CursorCore-Quantization |
|
Usage |
|
|
|
Here are some examples of how to use our model: |
|
1) Normal chat |
|
|
|
Script: |
|
|
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-9B") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"TechxGenus/CursorCore-Yi-9B", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
|
|
messages = [ |
|
{"role": "user", "content": "Hi!"}, |
|
] |
|
prompt = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
inputs = tokenizer.encode(prompt, return_tensors="pt") |
|
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512) |
|
print(tokenizer.decode(outputs[0])) |
|
|
|
Output: |
|
|
|
<|im_start|>system |
|
You are a helpful programming assistant.<|im_end|> |
|
<|im_start|>user |
|
Hi!<|im_end|> |
|
<|im_start|>assistant |
|
Hello! I'm an AI language model and I can help you with any programming questions you might have. What specific problem or task are you trying to solve?<|im_end|> |
|
|
|
2) Assistant-Conversation |
|
|
|
In our work, we introduce a new framework of AI-assisted programming task. It is designed for aligning anything during programming process, used for the implementation of features like Tab and Inline Chat. |
|
|
|
Script 1: |
|
|
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from eval.utils import prepare_input_for_wf |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-9B") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"TechxGenus/CursorCore-Yi-9B", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
sample = { |
|
"history": [ |
|
{ |
|
"type": "code", |
|
"lang": "python", |
|
"code": """def quick_sort(arr):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)""" |
|
} |
|
], |
|
"current": { |
|
"type": "code", |
|
"lang": "python", |
|
"code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)""" |
|
}, |
|
"user": "" |
|
} |
|
|
|
prompt = tokenizer.apply_chat_template( |
|
prepare_input_for_wf(sample), |
|
tokenize=False, |
|
chat_template="assistant-conversation", |
|
add_generation_prompt=True |
|
) |
|
|
|
inputs = tokenizer.encode(prompt, return_tensors="pt") |
|
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False) |
|
print(tokenizer.decode(outputs[0])) |
|
|
|
Output 1: |
|
|
|
<|im_start|>system |
|
You are a helpful programming assistant.<|im_end|> |
|
<|im_start|>history |
|
```python |
|
def quick_sort(arr): |
|
if len(arr) <= 1: |
|
return arr |
|
pivot = arr[len(arr) // 2] |
|
left = [x for x in arr if x < pivot] |
|
middle = [x for x in arr if x == pivot] |
|
right = [x for x in arr if x > pivot] |
|
return quick_sort(left) + middle + quick_sort(right) |
|
```<|im_end|> |
|
<|im_start|>current |
|
```python |
|
def quick_sort(array): |
|
if len(arr) <= 1: |
|
return arr |
|
pivot = arr[len(arr) // 2] |
|
left = [x for x in arr if x < pivot] |
|
middle = [x for x in arr if x == pivot] |
|
right = [x for x in arr if x > pivot] |
|
return quick_sort(left) + middle + quick_sort(right) |
|
```<|im_end|> |
|
<|im_start|>assistant |
|
<|next_start|>```python |
|
def quick_sort(array): |
|
if len(array) <= 1: |
|
return array |
|
pivot = array[len(array) // 2] |
|
left = [x for x in array if x < pivot] |
|
middle = [x for x in array if x == pivot] |
|
right = [x for x in array if x > pivot] |
|
return quick_sort(left) + middle + quick_sort(right) |
|
```<|next_end|> |
|
The user has provided a revised code change that corrects the parameter name from `arr` to `array` in the `quick_sort` function. This change ensures consistency in the function definition and avoids potential confusion or errors. |
|
|
|
To implement this, we will: |
|
1. Update the parameter name in the function definition from `arr` to `array`. |
|
2. Ensure that all references to `arr` within the function are updated to `array`. |
|
|
|
This will make the function definition and internal references consistent, improving code readability and maintainability.<|im_end|> |
|
|
|
Script 2: |
|
|
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from eval.utils import prepare_input_for_wf |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-9B") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"TechxGenus/CursorCore-Yi-9B", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
sample = { |
|
"history": [], |
|
"current": { |
|
"type": "code", |
|
"lang": "python", |
|
"code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)""" |
|
}, |
|
"user": "Add Docstring." |
|
} |
|
|
|
prompt = tokenizer.apply_chat_template( |
|
prepare_input_for_wf(sample), |
|
tokenize=False, |
|
chat_template="assistant-conversation", |
|
add_generation_prompt=True |
|
) |
|
|
|
inputs = tokenizer.encode(prompt, return_tensors="pt") |
|
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False) |
|
print(tokenizer.decode(outputs[0])) |
|
|
|
Output 2: |
|
|
|
<|im_start|>system |
|
You are a helpful programming assistant.<|im_end|> |
|
<|im_start|>current |
|
```python |
|
def quick_sort(array): |
|
if len(arr) <= 1: |
|
return arr |
|
pivot = arr[len(arr) // 2] |
|
left = [x for x in arr if x < pivot] |
|
middle = [x for x in arr if x == pivot] |
|
right = [x for x in arr if x > pivot] |
|
return quick_sort(left) + middle + quick_sort(right) |
|
```<|im_end|> |
|
<|im_start|>user |
|
Add Docstring.<|im_end|> |
|
<|im_start|>assistant |
|
<|next_start|>```python |
|
def quick_sort(array): |
|
""" |
|
This is an implementation of the quick sort algorithm. |
|
""" |
|
if len(arr) <= 1: |
|
return arr |
|
pivot = arr[len(arr) // 2] |
|
left = [x for x in arr if x < pivot] |
|
middle = [x for x in arr if x == pivot] |
|
right = [x for x in arr if x > pivot] |
|
return quick_sort(left) + middle + quick_sort(right) |
|
```<|next_end|><|im_end|> |
|
|
|
For models in Locate-and-Change (LC) and Search-and-Replace (SR) formats, the output examples are as follows: |
|
|
|
Script for LC: |
|
|
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from eval.utils import prepare_input_for_lc |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-1.5B-LC") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"TechxGenus/CursorCore-Yi-1.5B-LC", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
sample = { |
|
"history": [], |
|
"current": { |
|
"type": "code", |
|
"lang": "python", |
|
"code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)""" |
|
}, |
|
"user": "Add Docstring." |
|
} |
|
|
|
prompt = tokenizer.apply_chat_template( |
|
prepare_input_for_lc(sample), |
|
tokenize=False, |
|
chat_template="assistant-conversation", |
|
add_generation_prompt=True |
|
) |
|
|
|
inputs = tokenizer.encode(prompt, return_tensors="pt") |
|
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False) |
|
print(tokenizer.decode(outputs[0])) |
|
|
|
Output for LC: |
|
|
|
<|im_start|>system |
|
You are a helpful programming assistant.<|im_end|> |
|
<|im_start|>current |
|
```python |
|
1 def quick_sort(array): |
|
2 if len(arr) <= 1: |
|
3 return arr |
|
4 pivot = arr[len(arr) // 2] |
|
5 left = [x for x in arr if x < pivot] |
|
6 middle = [x for x in arr if x == pivot] |
|
7 right = [x for x in arr if x > pivot] |
|
8 return quick_sort(left) + middle + quick_sort(right) |
|
```<|im_end|> |
|
<|im_start|>user |
|
Add Docstring.<|im_end|> |
|
<|im_start|>assistant |
|
<|next_start|>1,1 |
|
``` |
|
'''This function will sort an array using quick sort algorithm''' |
|
```<|next_end|> |
|
To enhance the readability and maintainability of the code, we should add a docstring to the `quick_sort` function. A docstring provides a clear description of what the function does, which is particularly useful for other developers who might use or modify this code in the future. |
|
|
|
The docstring will be added immediately after the function definition, explaining that the function uses the quick sort algorithm to sort an array. This will make the code more self-explanatory and easier to understand. |
|
|
|
Here's the plan: |
|
1. Add a docstring at the beginning of the `quick_sort` function. |
|
2. Ensure the docstring is clear and concise, describing the purpose of the function. |
|
|
|
This modification will improve the code's documentation without altering its functionality.<|im_end|> |
|
|
|
Script for SR: |
|
|
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from eval.utils import prepare_input_for_sr |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-1.5B-SR") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"TechxGenus/CursorCore-Yi-1.5B-SR", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
sample = { |
|
"history": [], |
|
"current": { |
|
"type": "code", |
|
"lang": "python", |
|
"code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)""" |
|
}, |
|
"user": "Add Docstring." |
|
} |
|
|
|
prompt = tokenizer.apply_chat_template( |
|
prepare_input_for_sr(sample), |
|
tokenize=False, |
|
chat_template="assistant-conversation", |
|
add_generation_prompt=True |
|
) |
|
|
|
inputs = tokenizer.encode(prompt, return_tensors="pt") |
|
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False) |
|
print(tokenizer.decode(outputs[0])) |
|
|
|
Output for SR: |
|
|
|
<|im_start|>system |
|
You are a helpful programming assistant.<|im_end|> |
|
<|im_start|>current |
|
```python |
|
def quick_sort(array): |
|
if len(arr) <= 1: |
|
return arr |
|
pivot = arr[len(arr) // 2] |
|
left = [x for x in arr if x < pivot] |
|
middle = [x for x in arr if x == pivot] |
|
right = [x for x in arr if x > pivot] |
|
return quick_sort(left) + middle + quick_sort(right) |
|
```<|im_end|> |
|
<|im_start|>user |
|
Add Docstring.<|im_end|> |
|
<|im_start|>assistant |
|
<|next_start|>```python |
|
def quick_sort(array): |
|
<|search_and_replace|> |
|
def quick_sort(array): |
|
""" |
|
This function implements quick sort algorithm |
|
""" |
|
```<|next_end|><|im_end|> |
|
|
|
3) Web Demo |
|
|
|
We create a web demo for CursorCore. Please visit CursorWeb for more details. |
|
Future Work |
|
|
|
CursorCore is still in a very early stage, and lots of work is needed to achieve a better user experience. For example: |
|
|
|
Repository-level editing support |
|
Better and faster editing formats |
|
Better user interface and presentation |
|
... |
|
|
|
Citation |
|
|
|
@article{jiang2024cursorcore, |
|
title = {CursorCore: Assist Programming through Aligning Anything}, |
|
author = {Hao Jiang and Qi Liu and Rui Li and Shengyu Ye and Shijin Wang}, |
|
year = {2024}, |
|
journal = {arXiv preprint arXiv: 2410.07002} |
|
} |
|
|
|
Contribution |
|
|
|
Contributions are welcome! If you find any bugs or have suggestions for improvements, please open an issue or submit a pull request. |
|
|
|
--- |
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo Triangle104/CursorCore-QW2.5-7B-Q4_K_M-GGUF --hf-file cursorcore-qw2.5-7b-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo Triangle104/CursorCore-QW2.5-7B-Q4_K_M-GGUF --hf-file cursorcore-qw2.5-7b-q4_k_m.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo Triangle104/CursorCore-QW2.5-7B-Q4_K_M-GGUF --hf-file cursorcore-qw2.5-7b-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo Triangle104/CursorCore-QW2.5-7B-Q4_K_M-GGUF --hf-file cursorcore-qw2.5-7b-q4_k_m.gguf -c 2048 |
|
``` |
|
|