Triangle104's picture
Upload README.md with huggingface_hub
4ad9fcf verified
|
raw
history blame
2.43 kB
---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-1.5B/blob/main/LICENSE
datasets:
- OpenCoder-LLM/opc-sft-stage1
- OpenCoder-LLM/opc-sft-stage2
- microsoft/orca-agentinstruct-1M-v1
- microsoft/orca-math-word-problems-200k
- NousResearch/hermes-function-calling-v1
- AI-MO/NuminaMath-CoT
- AI-MO/NuminaMath-TIR
- allenai/tulu-3-sft-mixture
- cognitivecomputations/dolphin-coder
- HuggingFaceTB/smoltalk
- cognitivecomputations/samantha-data
- m-a-p/CodeFeedback-Filtered-Instruction
- m-a-p/Code-Feedback
language:
- en
base_model: cognitivecomputations/Dolphin3.0-Qwen2.5-1.5B
tags:
- llama-cpp
- gguf-my-repo
---
# Triangle104/Dolphin3.0-Qwen2.5-1.5B-Q4_K_M-GGUF
This model was converted to GGUF format from [`cognitivecomputations/Dolphin3.0-Qwen2.5-1.5B`](https://huggingface.co/cognitivecomputations/Dolphin3.0-Qwen2.5-1.5B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/cognitivecomputations/Dolphin3.0-Qwen2.5-1.5B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Dolphin3.0-Qwen2.5-1.5B-Q4_K_M-GGUF --hf-file dolphin3.0-qwen2.5-1.5b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Dolphin3.0-Qwen2.5-1.5B-Q4_K_M-GGUF --hf-file dolphin3.0-qwen2.5-1.5b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Dolphin3.0-Qwen2.5-1.5B-Q4_K_M-GGUF --hf-file dolphin3.0-qwen2.5-1.5b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Dolphin3.0-Qwen2.5-1.5B-Q4_K_M-GGUF --hf-file dolphin3.0-qwen2.5-1.5b-q4_k_m.gguf -c 2048
```