library_name: transformers
tags:
- not-for-all-audiences
- mergekit
- llama-cpp
- gguf-my-repo
datasets:
- crestf411/LimaRP-DS
- Gryphe/Sonnet3.5-Charcard-Roleplay
- anthracite-org/c2_logs_32k_mistral-v3_v1.2_no_system
- anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system
- anthracite-org/kalo-opus-instruct-3k-filtered-no-system
- anthracite-org/nopm_claude_writing_fixed
base_model: crestf411/MN-Slush
license: apache-2.0
Triangle104/MN-Slush-Q4_K_M-GGUF
This model was converted to GGUF format from crestf411/MN-Slush
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Model details:
Slush is a two-stage model trained with high LoRA dropout, where stage 1 is a pretraining continuation on the base model, aimed at boosting the model's creativity and writing capabilities. This is then merged into the instruction tune model, and stage 2 is a fine tuning step on top of this to further enhance its roleplaying capabilities and/or to repair any damage caused in the stage 1 merge.
This is still early stage. As always, feedback is welcome, and begone if you demand perfection.
The second stage, like the Sunfall series, follows the Silly Tavern preset (Mistral V2 & V3, though V3-Tekken works fine), so ymmv in particular if you use some other tool and/or preset.
Parameter suggestions:
I did all my testing with temp 1, min-p 0.1, DRY 0.8.
Training details:
Stage 1 (continued pretraining) Target: mistralai/Mistral-Nemo-Base-2407 (resulting LoRA merged into mistralai/Mistral-Nemo-Instruct-2407) LoRA dropout 0.5 (motivation) LoRA rank 64, alpha 128 (motivation) LR cosine 4e-6 LoRA+ with LR Ratio: 15 Context size: 16384 Gradient accumulation steps: 4 Epochs: 1
Stage 2 (fine tune) Target: Stage 1 model LoRA dropout 0.5 LoRA rank 32, alpha 64 LR cosine 5e-6 (min 5e-7) LoRA+ with LR Ratio: 15 Context size: 16384 Gradient accumulation steps: 4 Epochs: 2
Merge Method
This model was merged using the TIES merge method using mistralai/Mistral-Nemo-Base-2407 as a base.
Configuration
The following YAML configuration was used to produce this model:
models:
- model: stage1-on-instruct parameters: weight: 1 density: 1
- model: stage2-on-stage1 parameters: weight: 0.7 density: 1
- model: mistralai/Mistral-Nemo-Instruct-2407 parameters: weight: 1 density: 1 merge_method: ties base_model: mistralai/Mistral-Nemo-Base-2407 parameters: weight: 1 density: 1 normalize: true int8_mask: true tokenizer_source: mistralai/Mistral-Nemo-Instruct-2407 dtype: bfloat16
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/MN-Slush-Q4_K_M-GGUF --hf-file mn-slush-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/MN-Slush-Q4_K_M-GGUF --hf-file mn-slush-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/MN-Slush-Q4_K_M-GGUF --hf-file mn-slush-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/MN-Slush-Q4_K_M-GGUF --hf-file mn-slush-q4_k_m.gguf -c 2048