Triangle104's picture
Update README.md
76e7a98 verified
|
raw
history blame
9.01 kB
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
tags:
- language
- granite-3.0
- llama-cpp
- gguf-my-repo
base_model: ibm-granite/granite-3.0-1b-a400m-instruct
model-index:
- name: granite-3.0-2b-instruct
results:
- task:
type: text-generation
dataset:
name: IFEval
type: instruction-following
metrics:
- type: pass@1
value: 32.39
name: pass@1
- type: pass@1
value: 6.17
name: pass@1
- task:
type: text-generation
dataset:
name: AGI-Eval
type: human-exams
metrics:
- type: pass@1
value: 20.35
name: pass@1
- type: pass@1
value: 32.0
name: pass@1
- type: pass@1
value: 12.21
name: pass@1
- task:
type: text-generation
dataset:
name: OBQA
type: commonsense
metrics:
- type: pass@1
value: 38.4
name: pass@1
- type: pass@1
value: 47.55
name: pass@1
- type: pass@1
value: 65.59
name: pass@1
- type: pass@1
value: 61.17
name: pass@1
- type: pass@1
value: 49.11
name: pass@1
- task:
type: text-generation
dataset:
name: BoolQ
type: reading-comprehension
metrics:
- type: pass@1
value: 70.12
name: pass@1
- type: pass@1
value: 1.27
name: pass@1
- task:
type: text-generation
dataset:
name: ARC-C
type: reasoning
metrics:
- type: pass@1
value: 41.21
name: pass@1
- type: pass@1
value: 23.07
name: pass@1
- type: pass@1
value: 31.77
name: pass@1
- task:
type: text-generation
dataset:
name: HumanEvalSynthesis
type: code
metrics:
- type: pass@1
value: 30.18
name: pass@1
- type: pass@1
value: 26.22
name: pass@1
- type: pass@1
value: 21.95
name: pass@1
- type: pass@1
value: 15.4
name: pass@1
- task:
type: text-generation
dataset:
name: GSM8K
type: math
metrics:
- type: pass@1
value: 26.31
name: pass@1
- type: pass@1
value: 10.88
name: pass@1
- task:
type: text-generation
dataset:
name: PAWS-X (7 langs)
type: multilingual
metrics:
- type: pass@1
value: 45.84
name: pass@1
- type: pass@1
value: 11.8
name: pass@1
---
# Triangle104/granite-3.0-1b-a400m-instruct-Q5_K_S-GGUF
This model was converted to GGUF format from [`ibm-granite/granite-3.0-1b-a400m-instruct`](https://huggingface.co/ibm-granite/granite-3.0-1b-a400m-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ibm-granite/granite-3.0-1b-a400m-instruct) for more details on the model.
---
Model Summary: Granite-3.0-3B-A800M-Instruct is a 3B parameter model finetuned from Granite-3.0-3B-A800M-Base-4K using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging.
Developers: Granite Team, IBM
GitHub Repository: ibm-granite/granite-3.0-language-models
Website: Granite Docs
Paper: Granite 3.0 Language Models
Release Date: October 21st, 2024
License: Apache 2.0
Supported Languages: English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite 3.0 models for languages beyond these 12 languages.
Intended use: The model is designed to respond to general instructions and can be used to build AI assistants for multiple domains, including business applications.
Capabilities
Summarization
Text classification
Text extraction
Question-answering
Retrieval Augmented Generation (RAG)
Code related tasks
Function-calling tasks
Multilingual dialog use cases
Generation: This is a simple example of how to use Granite-3.0-3B-A800M-Instruct model.
Install the following libraries:
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
Then, copy the snippet from the section that is relevant for your use case.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "auto"
model_path = "ibm-granite/granite-3.0-3b-a800m-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
chat = [
{ "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# tokenize the text
input_tokens = tokenizer(chat, return_tensors="pt").to(device)
# generate output tokens
output = model.generate(**input_tokens,
max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# print output
print(output)
Model Architecture: Granite-3.0-3B-A800M-Instruct is based on a decoder-only sparse Mixture of Experts (MoE) transformer architecture. Core components of this architecture are: Fine-grained Experts, Dropless Token Routing, and Load Balancing Loss.
Model 2B Dense 8B Dense 1B MoE 3B MoE
Embedding size 2048 4096 1024 1536
Number of layers 40 40 24 32
Attention head size 64 128 64 64
Number of attention heads 32 32 16 24
Number of KV heads 8 8 8 8
MLP hidden size 8192 12800 512 512
MLP activation SwiGLU SwiGLU SwiGLU SwiGLU
Number of Experts — — 32 40
MoE TopK — — 8 8
Initialization std 0.1 0.1 0.1 0.1
Sequence Length 4096 4096 4096 4096
Position Embedding RoPE RoPE RoPE RoPE
# Paremeters 2.5B 8.1B 1.3B 3.3B
# Active Parameters 2.5B 8.1B 400M 800M
# Training tokens 12T 12T 10T 10T
Training Data: Overall, our SFT data is largely comprised of three key sources: (1) publicly available datasets with permissive license, (2) internal synthetic data targeting specific capabilities, and (3) very small amounts of human-curated data. A detailed attribution of datasets can be found in the Granite Technical Report and Accompanying Author List.
Infrastructure: We train Granite 3.0 Language Models using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs while minimizing environmental impact by utilizing 100% renewable energy sources.
Ethical Considerations and Limitations: Granite 3.0 Instruct Models are primarily finetuned using instruction-response pairs mostly in English, but also multilingual data covering eleven languages. Although this model can handle multilingual dialog use cases, its performance might not be similar to English tasks. In such case, introducing a small number of examples (few-shot) can help the model in generating more accurate outputs. While this model has been aligned by keeping safety in consideration, the model may in some cases produce inaccurate, biased, or unsafe responses to user prompts. So we urge the community to use this model with proper safety testing and tuning tailored for their specific tasks.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/granite-3.0-1b-a400m-instruct-Q5_K_S-GGUF --hf-file granite-3.0-1b-a400m-instruct-q5_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/granite-3.0-1b-a400m-instruct-Q5_K_S-GGUF --hf-file granite-3.0-1b-a400m-instruct-q5_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/granite-3.0-1b-a400m-instruct-Q5_K_S-GGUF --hf-file granite-3.0-1b-a400m-instruct-q5_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/granite-3.0-1b-a400m-instruct-Q5_K_S-GGUF --hf-file granite-3.0-1b-a400m-instruct-q5_k_s.gguf -c 2048
```