|
# Uncased Finnish Sentence BERT model |
|
|
|
Finnish Sentence BERT trained from FinBERT |
|
|
|
## Training |
|
|
|
FinBERT model: TurkuNLP/bert-base-finnish-uncased-v1 |
|
Data: The data provided [here] (https://turkunlp.org/paraphrase.html), including the Finnish Paraphrase Corpus and the automatically collected paraphrase candidates (500K positive and 5M negative) |
|
Pooling: mean pooling |
|
Task: Binary prediction, whether two sentences are paraphrases or not. Note: the labels 3 and 4 are considered paraphrases, and labels 1 and 2 non-paraphrases. [Details on labels] (https://aclanthology.org/2021.nodalida-main.29/) |
|
|
|
## Usage |
|
|
|
The same as in [HuggingFace documentation] (https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens). Either through `SentenceTransformer` or `HuggingFace Transformers` |
|
|
|
### SentenceTransformer |
|
|
|
``` |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["Tämä on esimerkkilause.", "Tämä on toinen lause."] |
|
|
|
model = SentenceTransformer('TurkuNLP/sbert-uncased-finnish-paraphrase') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
### HuggingFace Transformers |
|
|
|
``` |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ["Tämä on esimerkkilause.", "Tämä on toinen lause."] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('TurkuNLP/sbert-uncased-finnish-paraphrase') |
|
model = AutoModel.from_pretrained('TurkuNLP/sbert-uncased-finnish-paraphrase') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|