|
--- |
|
tags: |
|
- clip |
|
library_name: open_clip |
|
pipeline_tag: zero-shot-image-classification |
|
license: apache-2.0 |
|
datasets: |
|
- laion/laion2b-en |
|
--- |
|
# Model card for ViT-H-14-CLIPA-laion2B |
|
|
|
A CLIPA-v2 model... |
|
|
|
## Model Details |
|
- **Model Type:** Contrastive Image-Text, Zero-Shot Image Classification. |
|
- **Original:** https://github.com/UCSC-VLAA/CLIPA |
|
- **Dataset:** laion/laion2B-en |
|
- **Papers:** |
|
- CLIPA-v2: Scaling CLIP Training with 81.1% Zero-shot ImageNet Accuracy within a $10,000 Budget; An Extra $4,000 Unlocks 81.8% Accuracy: https://arxiv.org/abs/2306.15658 |
|
- An Inverse Scaling Law for CLIP Training: https://arxiv.org/abs/2305.07017 |
|
|
|
## Model Usage |
|
### With OpenCLIP |
|
``` |
|
import torch |
|
import torch.nn.functional as F |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
from open_clip import create_model_from_pretrained, get_tokenizer |
|
|
|
model, preprocess = create_model_from_pretrained('hf-hub:ViT-H-14-CLIPA') |
|
tokenizer = get_tokenizer('hf-hub:ViT-H-14-CLIPA') |
|
|
|
image = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
image = preprocess(image).unsqueeze(0) |
|
|
|
text = tokenizer(["a diagram", "a dog", "a cat", "a beignet"], context_length=model.context_length) |
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
image_features = model.encode_image(image) |
|
text_features = model.encode_text(text) |
|
image_features = F.normalize(image_features, dim=-1) |
|
text_features = F.normalize(text_features, dim=-1) |
|
|
|
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) |
|
|
|
print("Label probs:", text_probs) # prints: [[0., 0., 0., 1.0]] |
|
``` |
|
|
|
## Citation |
|
```bibtex |
|
@article{li2023clipav2, |
|
title={CLIPA-v2: Scaling CLIP Training with 81.1% Zero-shot ImageNet Accuracy within a $10,000 Budget; An Extra $4,000 Unlocks 81.8% Accuracy}, |
|
author={Xianhang Li and Zeyu Wang and Cihang Xie}, |
|
journal={arXiv preprint arXiv:2306.15658}, |
|
year={2023}, |
|
} |
|
``` |
|
```bibtex |
|
@inproceedings{li2023clipa, |
|
title={An Inverse Scaling Law for CLIP Training}, |
|
author={Xianhang Li and Zeyu Wang and Cihang Xie}, |
|
booktitle={NeurIPS}, |
|
year={2023}, |
|
} |
|
``` |
|
|