Edit model card

CZERT

This repository keeps Czert-A model for the paper Czert – Czech BERT-like Model for Language Representation For more information, see the paper

Available Models

You can download MLM & NSP only pretrained models CZERT-A-v1 CZERT-B-v1

After some additional experiments, we found out that the tokenizers config was exported wrongly. In Czert-B-v1, the tokenizer parameter "do_lower_case" was wrongly set to true. In Czert-A-v1 the parameter "strip_accents" was incorrectly set to true.

Both mistakes are repaired in v2. CZERT-A-v2 CZERT-B-v2

or choose from one of Finetuned Models

How to Use CZERT?

Sentence Level Tasks

We evaluate our model on two sentence level tasks:

  • Sentiment Classification,
  • Semantic Text Similarity.

\t

Document Level Tasks

We evaluate our model on one document level task

  • Multi-label Document Classification.

Token Level Tasks

We evaluate our model on three token level tasks:

  • Named Entity Recognition,
  • Morphological Tagging,
  • Semantic Role Labelling.

Downstream Tasks Fine-tuning Results

Sentiment Classification

mBERT SlavicBERT ALBERT-r Czert-A Czert-B
FB 71.72 ± 0.91 73.87 ± 0.50 59.50 ± 0.47 72.47 ± 0.72 76.55 ± 0.14
CSFD 82.80 ± 0.14 82.51 ± 0.14 75.40 ± 0.18 79.58 ± 0.46 84.79 ± 0.26

Average F1 results for the Sentiment Classification task. For more information, see the paper.

Semantic Text Similarity

mBERT Pavlov Albert-random Czert-A Czert-B
STA-CNA 83.335 ± 0.063 83.593 ± 0.050 43.184 ± 0.125 82.942 ± 0.106 84.345 ± 0.028
STS-SVOB-img 79.367 ± 0.486 79.900 ± 0.810 15.739 ± 2.992 79.444 ± 0.338 83.744 ± 0.395
STS-SVOB-hl 78.833 ± 0.296 76.996 ± 0.305 33.949 ± 1.807 75.089 ± 0.806 79.827 ± 0.469

Comparison of Pearson correlation achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on semantic text similarity. For more information see the paper.

Multi-label Document Classification

mBERT SlavicBERT ALBERT-r Czert-A Czert-B
AUROC 97.62 ± 0.08 97.80 ± 0.06 94.35 ± 0.13 97.49 ± 0.07 98.00 ± 0.04
F1 83.04 ± 0.16 84.08 ± 0.14 72.44 ± 0.22 82.27 ± 0.17 85.06 ± 0.11

Comparison of F1 and AUROC score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on multi-label document classification. For more information see the paper.

Morphological Tagging

mBERT Pavlov Albert-random Czert-A Czert-B
Universal Dependencies 99.176 ± 0.006 99.211 ± 0.008 96.590 ± 0.096 98.713 ± 0.008 99.300 ± 0.009

Comparison of F1 score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on morphological tagging task. For more information see the paper.

Semantic Role Labelling

mBERT Pavlov Albert-random Czert-A Czert-B dep-based gold-dep
span 78.547 ± 0.110 79.333 ± 0.080 51.365 ± 0.423 72.254 ± 0.172 81.861 ± 0.102 \- \-
syntax 90.226 ± 0.224 90.492 ± 0.040 80.747 ± 0.131 80.319 ± 0.054 91.462 ± 0.062 85.19 89.52

SRL results – dep columns are evaluate with labelled F1 from CoNLL 2009 evaluation script, other columns are evaluated with span F1 score same as it was used for NER evaluation. For more information see the paper.

Named Entity Recognition

mBERT Pavlov Albert-random Czert-A Czert-B
CNEC 86.225 ± 0.208 86.565 ± 0.198 34.635 ± 0.343 72.945 ± 0.227 86.274 ± 0.116
BSNLP 2019 84.006 ± 1.248 86.699 ± 0.370 19.773 ± 0.938 48.859 ± 0.605 86.729 ± 0.344

Comparison of f1 score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on named entity recognition task. For more information see the paper.

Licence

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/

How should I cite CZERT?

For now, please cite the Arxiv paper:

@article{sido2021czert,
      title={Czert -- Czech BERT-like Model for Language Representation}, 
      author={Jakub Sido and Ondřej Pražák and Pavel Přibáň and Jan Pašek and Michal Seják and Miloslav Konopík},
      year={2021},
      eprint={2103.13031},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      journal={arXiv preprint arXiv:2103.13031},
}
Downloads last month
57
Inference API
Unable to determine this model’s pipeline type. Check the docs .