license: cc-by-nc-4.0
language:
- en
- de
- fr
- zh
- pt
- nl
- ru
- ko
- it
- es
metrics:
- comet
pipeline_tag: translation
Model Card for Model ID
This modelcard aims to be a base template for new models. It has been generated using this raw template.
Model Details
Model Description
TowerInstruct is a language model that results from fine-tuning TowerBase on the TowerBlocks supervised fine-tuning dataset. TowerInstruct v0.1 is the first model in the series. The model is trained to handle several translation-related tasks, such as general machine translation (e.g., sentence- and document-level translation, terminology-aware translation, context-aware translation), automatic post edition, named-entity recognition, gramatical error correction, and paraphrase generation. We will release more details in the upcoming technical report.
- Developed by: Unbabel, Instituto Superior Técnico, CentraleSupélec University of Paris-Saclay
- Model type: A 7B parameter model fine-tuned on a mix of publicly available, synthetic datasets on translation-related tasks, as well as conversational datasets and code instructions.
- Language(s) (NLP): English, Portuguese, Spanish, French, German, Dutch, Italian, Korean, Chinese, Russian
- License: CC-BY-NC-4.0
- Finetuned from model [optional]: TowerBase
Intended uses & limitations
The model was initially fine-tuned on a filtered and preprocessed supervised fine-tuning dataset (TowerBlocks), which contains a diverse range of data sources:
- Translation
- Automatic Post Edition
- Machine Translation Evaluation
- Context-aware Translation
- Terminology-aware Translation
- Multi-reference Translation
- Named-entity Recognition
- Paraphrase Generation
- Synthetic Chat data
- Code instructions
You can find the dataset and all data sources of TowerBlocks here.
Here's how you can run the model using the pipeline()
function from 🤗 Transformers:
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="Unbabel/TowerInstruct-v0.1", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{"role": "user", "content": "Translate the following text from English into Portuguese.\nEnglish: A group of researchers has released a new model for translation-related tasks.\nPortuguese:"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=False)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
Direct Use
Downstream Use [optional]
Out-of-Scope Use
Bias, Risks, and Limitations
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
Prompt Format
Mention mlchat here (no system prompt)
Supervised tasks
Prompts for different tasks.
[More Information Needed]
Training Details
Training Data
Link to TowerBlocks.
Training Procedure
Write sth about Axolotl.
Training Hyperparameters
The following hyperparameters were used during training:
learning_rate: 5e-07 train_batch_size: 2 eval_batch_size: 4 seed: 42 distributed_type: multi-GPU num_devices: 16 total_train_batch_size: 32 total_eval_batch_size: 64 optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: linear lr_scheduler_warmup_ratio: 0.1 num_epochs: 3.0
Citation
To be completed.