|
--- |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: lora-out |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
# lora-out |
|
|
|
This model was trained from scratch on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6736 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.6421 | 0.16 | 50 | 1.6217 | |
|
| 1.6288 | 0.31 | 100 | 1.6144 | |
|
| 1.5725 | 0.47 | 150 | 1.6102 | |
|
| 1.5582 | 0.62 | 200 | 1.6065 | |
|
| 1.6055 | 0.78 | 250 | 1.6051 | |
|
| 1.5733 | 0.93 | 300 | 1.6023 | |
|
| 1.4885 | 1.09 | 350 | 1.6130 | |
|
| 1.484 | 1.24 | 400 | 1.6169 | |
|
| 1.4354 | 1.4 | 450 | 1.6194 | |
|
| 1.4427 | 1.56 | 500 | 1.6187 | |
|
| 1.4687 | 1.71 | 550 | 1.6178 | |
|
| 1.461 | 1.87 | 600 | 1.6174 | |
|
| 1.327 | 2.02 | 650 | 1.6341 | |
|
| 1.3015 | 2.18 | 700 | 1.6665 | |
|
| 1.3328 | 2.33 | 750 | 1.6714 | |
|
| 1.3453 | 2.49 | 800 | 1.6718 | |
|
| 1.3458 | 2.64 | 850 | 1.6725 | |
|
| 1.3016 | 2.8 | 900 | 1.6737 | |
|
| 1.3018 | 2.95 | 950 | 1.6736 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.0 |
|
|