SauerkrautLM-ColQwen3-4b-v0.1

VAGO Solutions Logo

πŸ₯‡ Best 128-dim Model in Large (3-5B) Category | Excellent Performance with Half the Memory

SauerkrautLM-ColQwen3-4b-v0.1 achieves 90.80 NDCG@5 on ViDoRe v1, making it the #2 overall among 128-dim models and the best in the Large (3-5B) category for ViDoRe v1.

ViDoRe v1 Benchmark - 128-dim Models

🎯 Why Visual Document Retrieval?

Traditional OCR-based retrieval loses layout, tables, and visual context. Our visual approach:

  • βœ… No OCR errors - Direct visual understanding
  • βœ… Layout-aware - Understands tables, forms, charts
  • βœ… End-to-end - Single model, no pipeline complexity

πŸ† Key Achievements

Benchmark Score Rank (128-dim)
ViDoRe v1 90.80 #2
MTEB v1+v2 81.97 #4
ViDoRe v3 56.03 #4

Large Category Comparison (3-5B, 128-dim)

Model Params Dim ViDoRe v1 MTEB v1+v2 ViDoRe v3
SauerkrautLM-ColQwen3-4b-v0.1 ⭐ 4.0B 128 90.80 81.97 56.03
EvoQwen2.5-VL-Retriever-3B-v1 3.0B 128 90.67 82.76 -
colnomic-embed-multimodal-3b 3.0B 128 89.86 80.09 56.40
colqwen2.5-v0.2 3.0B 128 89.54 81.12 52.44
SauerkrautLM-ColMinistral3-3b-v0.1 3.0B 128 81.98 71.93 40.50

Best ViDoRe v1 in the Large category!

Detailed Benchmark Results

πŸ“Š ViDoRe v1 (NDCG@5) - Click to expand
Task Score
ArxivQA 91.83
DocVQA 66.96 πŸ₯‡
InfoVQA 94.23
ShiftProject 90.55
SyntheticDocQA-AI 99.63
SyntheticDocQA-Energy 96.52
SyntheticDocQA-Gov 96.16
SyntheticDocQA-Health 100.00 πŸ₯‡
TabFQuAD 89.48
TATDQA 82.66
Average 90.80
πŸ“Š MTEB v1+v2 (NDCG@5) - Click to expand

ViDoRe v1 Tasks:

Task Score
ArxivQA 91.83
DocVQA 66.96 πŸ₯‡
InfoVQA 94.23
ShiftProject 90.55
SyntheticDocQA-AI 99.63
SyntheticDocQA-Energy 96.52
SyntheticDocQA-Gov 96.16
SyntheticDocQA-Health 100.00 πŸ₯‡
TabFQuAD 89.48
TATDQA 82.66

ViDoRe v2 Tasks (Multilingual):

Task Score
ViDoRe-v2-2BioMed 58.85
ViDoRe-v2-2Econ 54.96
ViDoRe-v2-2ESG-HL 69.23
ViDoRe-v2-2ESG 56.52
Combined Average 81.97
πŸ“Š ViDoRe v3 (NDCG@10) - Click to expand
Task Score
ViDoRe-v3-CS 73.96
ViDoRe-v3-Energy 64.66
ViDoRe-v3-FinanceEn 55.92
ViDoRe-v3-FinanceFr 42.87
ViDoRe-v3-HR 55.70
ViDoRe-v3-Industry 46.06
ViDoRe-v3-Pharma 60.70
ViDoRe-v3-Physics 48.33
Average 56.03

Overall Summary (128-dim Models)

Model Params ViDoRe v1 MTEB v1+v2 ViDoRe v3
SauerkrautLM-ColQwen3-8b-v0.1 8.0B 91.08 (#1) 82.91 (#2) 58.55 (#1)
SauerkrautLM-ColQwen3-4b-v0.1 ⭐ 4.0B 90.80 (#2) 81.97 (#4) 56.03 (#4)
EvoQwen2.5-VL-Retriever-7B-v1 7.0B 90.68 (#3) 83.41 (#1) -
EvoQwen2.5-VL-Retriever-3B-v1 3.0B 90.67 (#4) 82.76 (#3) -
SauerkrautLM-ColQwen3-2b-v0.1 2.2B 90.24 (#5) 81.02 (#7) 54.32 (#5)
colqwen2.5-v0.2 3.0B 89.54 (#8) 81.12 (#6) 52.44 (#6)

πŸ“‹ Summary Tables

128-dim Models Comparison

128-dim Models Summary

Comparison vs High-dim Models

High-dim Comparison

✨ Key Features

  • πŸ† #2 Overall (128-dim): Second highest ViDoRe v1 score among all 128-dim models
  • πŸ₯‡ #1 in Large Category: Best 3-5B model on ViDoRe v1
  • πŸ’Ύ Memory Efficient: Only ~8GB VRAM (half of 8B model)
  • ⚑ Compact Embeddings: 128-dimensional
  • 🌍 Multilingual: 6 languages (EN, DE, FR, ES, IT, PT)

Model Details

Property Value
Base Model Qwen/Qwen3-VL-4B
Parameters 4.0B
Embedding Dimension 128
VRAM (bfloat16) ~8 GB
Max Context Length 262,144 tokens
License Apache 2.0

Training

Hardware & Configuration

Setting Value
GPUs 4x NVIDIA RTX 6000 Ada (48GB)
Effective Batch Size 256
Precision bfloat16

Datasets

Dataset Type Description
vidore/colpali_train_set Public ColPali training data
openbmb/VisRAG-Ret-Train-In-domain-data Public Visual RAG training data
llamaindex/vdr-multilingual-train Public Multilingual document retrieval
VAGO Multilingual Dataset 1 In-house Proprietary multilingual document-query pairs
VAGO Multilingual Dataset 2 In-house Proprietary multilingual document-query pairs

Installation & Usage

⚠️ Important: Install our package first before loading the model:

pip install git+https://github.com/VAGOsolutions/sauerkrautlm-colpali
import torch
from PIL import Image
from sauerkrautlm_colpali.models import ColQwen3, ColQwen3Processor

model_name = "VAGOsolutions/SauerkrautLM-ColQwen3-4b-v0.1"

model = ColQwen3.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
    device_map="cuda:0",
).eval()

processor = ColQwen3Processor.from_pretrained(model_name)

images = [Image.open("document.png")]
queries = ["What is the main topic?"]

batch_images = processor.process_images(images).to(model.device)
batch_queries = processor.process_queries(queries).to(model.device)

with torch.no_grad():
    image_embeddings = model(**batch_images)
    query_embeddings = model(**batch_queries)

scores = processor.score(query_embeddings, image_embeddings)

πŸ“Š Additional Benchmark Visualizations

MTEB v1+v2 Benchmark (128-dim Models)

MTEB v1+v2 Benchmark - 128-dim Models

ViDoRe v3 Benchmark (128-dim Models)

ViDoRe v3 Benchmark - 128-dim Models

Our Models vs High-dim Models

ViDoRe v1 - Our Models vs High-dim

Citation

@misc{sauerkrautlm-colpali-2025,
  title={SauerkrautLM-ColPali: Multi-Vector Vision Retrieval Models},
  author={David Golchinfar},
  organization={VAGO Solutions},
  year={2025},
  url={https://github.com/VAGOsolutions/sauerkrautlm-colpali}
}

Contact

Downloads last month
11
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Datasets used to train VAGOsolutions/SauerkrautLM-ColQwen3-4b-v0.1

Space using VAGOsolutions/SauerkrautLM-ColQwen3-4b-v0.1 1

Collection including VAGOsolutions/SauerkrautLM-ColQwen3-4b-v0.1