File size: 22,481 Bytes
60c8205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
---
base_model: intfloat/multilingual-e5-small
language:
- multilingual
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2320
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'MVGO; medium vacuum

    gas oil'
  sentences:
  - 과분해
  - Medium Vacuum Gas Oil(MVGO) ;
  - '선적 전 또는 양하 후에 화물창에 잔존하는 소량의 액체화물 양을 결정하는 수학

    적인 계산 수식'
- source_sentence: PLE; plain large end
  sentences:
  - Plain Large End ;
  - '부하중 변압기 Tap 변환기 ;

    변압기 권선의 Tap을 무정전으로 변경하는 장치'
  - Cone Roof Tank에서 Tank내의 Vapor가 외부로 나갈  있도록 만들어 놓은 구멍
- source_sentence: Fluidization
  sentences:
  - '핵심성과지표;

    어떤 계획이나 목표가 성공하였는지 또는 성공하고 있는지를 확인하려면 그 성공

    을 구성하는 요소들을 측정하는 지표를 찾아 측정하여야 하는데, 이들 지표 중 성

    공을 확인할 수 있는 가장 결정적인 지표를 KPI라고 부릅니다.'
  - '전압변동에 영향을 주는 무효전력을 줄이기 위한 조상설비의 일종으로 정지형 무

    효전력 보상장치'
  - 고체층을 액체나 기체로 확대시키거나 현탁시켜 유통하도록 하는 
- source_sentence: 'SH; surface hardened

    steel body'
  sentences:
  - Surface Hardened Steel Body ;
  - 분산제 ; 슬러지 생성을 방지하기 위하여 Oil에 넣어주는 약품
  - '작업위험성평가;

    현장에서 수행되는 작업을 포함한 전반적인 직무 활동에 대하여 위험요인을 분석

    하여 현재 안전조치를 검토하고 안전대책을 마련하는 기법'
- source_sentence: U-205200
  sentences:
  - 물속의 (-)ion을 OH-로 치환해 주는 이온교환수지탑
  - 차단기, 스위치류 , 스위치
  - 올레핀 송유/동력 Nitrogen Section
model-index:
- name: Multilingual base soil embedding model (quantized)
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.2441860465116279
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.31007751937984496
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.3643410852713178
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.4108527131782946
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.2441860465116279
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.10335917312661498
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.07286821705426358
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.041085271317829464
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.2441860465116279
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.31007751937984496
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3643410852713178
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4108527131782946
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3172493867293268
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.28840746893072483
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3003133446683658
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.2054263565891473
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.28294573643410853
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.3178294573643411
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.38372093023255816
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.2054263565891473
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.09431524547803617
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.06356589147286822
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.03837209302325582
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.2054263565891473
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.28294573643410853
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3178294573643411
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.38372093023255816
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2850988708112555
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.25465270087363123
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.26532412971784447
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.1937984496124031
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.2713178294573643
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.29844961240310075
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.3488372093023256
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.1937984496124031
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.0904392764857881
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.059689922480620154
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.03488372093023256
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1937984496124031
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2713178294573643
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.29844961240310075
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.3488372093023256
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.26467320016495083
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.2385474344776671
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2482312240959752
      name: Cosine Map@100
---

# Multilingual base soil embedding model (quantized)

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** multilingual
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ValentinaKim/Multilingual-base-soil-embedding")
# Run inference
sentences = [
    'U-205200',
    '올레핀 송유/동력 Nitrogen Section',
    '차단기, 스위치류 , 스위치',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2442     |
| cosine_accuracy@3   | 0.3101     |
| cosine_accuracy@5   | 0.3643     |
| cosine_accuracy@10  | 0.4109     |
| cosine_precision@1  | 0.2442     |
| cosine_precision@3  | 0.1034     |
| cosine_precision@5  | 0.0729     |
| cosine_precision@10 | 0.0411     |
| cosine_recall@1     | 0.2442     |
| cosine_recall@3     | 0.3101     |
| cosine_recall@5     | 0.3643     |
| cosine_recall@10    | 0.4109     |
| cosine_ndcg@10      | 0.3172     |
| cosine_mrr@10       | 0.2884     |
| **cosine_map@100**  | **0.3003** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2054     |
| cosine_accuracy@3   | 0.2829     |
| cosine_accuracy@5   | 0.3178     |
| cosine_accuracy@10  | 0.3837     |
| cosine_precision@1  | 0.2054     |
| cosine_precision@3  | 0.0943     |
| cosine_precision@5  | 0.0636     |
| cosine_precision@10 | 0.0384     |
| cosine_recall@1     | 0.2054     |
| cosine_recall@3     | 0.2829     |
| cosine_recall@5     | 0.3178     |
| cosine_recall@10    | 0.3837     |
| cosine_ndcg@10      | 0.2851     |
| cosine_mrr@10       | 0.2547     |
| **cosine_map@100**  | **0.2653** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1938     |
| cosine_accuracy@3   | 0.2713     |
| cosine_accuracy@5   | 0.2984     |
| cosine_accuracy@10  | 0.3488     |
| cosine_precision@1  | 0.1938     |
| cosine_precision@3  | 0.0904     |
| cosine_precision@5  | 0.0597     |
| cosine_precision@10 | 0.0349     |
| cosine_recall@1     | 0.1938     |
| cosine_recall@3     | 0.2713     |
| cosine_recall@5     | 0.2984     |
| cosine_recall@10    | 0.3488     |
| cosine_ndcg@10      | 0.2647     |
| cosine_mrr@10       | 0.2385     |
| **cosine_map@100**  | **0.2482** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 2,320 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                           | positive                                                                           |
  |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                             |
  | details | <ul><li>min: 3 tokens</li><li>mean: 6.72 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 35.77 tokens</li><li>max: 408 tokens</li></ul> |
* Samples:
  | anchor                                            | positive                                                                                                            |
  |:--------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|
  | <code>Deionizer</code>                            | <code>탈이온장치 ; Demineralizer와 동일</code>                                                                              |
  | <code>Sub-CC; sub-contracting<br>committee</code> | <code>외주 계약의 투명성과 공정성을 확보하기 위한 Sub-계약위원회로서 위원 및 위원<br>장은 CEO가 임명한다. CC이원원 부문장 이상 임원으로 하고 간사는 구매관리팀<br>장이 한다.</code> |
  | <code>In-line Sampler</code>                      | <code>원유 속의 물과 침전물의 함량을 측정하기 위하여 원유하역 Line에 설치해 놓은<br>시료채취기</code>                                                  |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: False
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_64_cosine_map@100 |
|:------:|:----:|:-------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.8767 | 4    | -             | 0.2156                 | 0.2448                 | 0.1831                |
| 1.9726 | 9    | -             | 0.2511                 | 0.2765                 | 0.2154                |
| 2.1918 | 10   | 7.6309        | -                      | -                      | -                     |
| 2.8493 | 13   | -             | 0.2531                 | 0.2852                 | 0.2345                |
| 3.9452 | 18   | -             | 0.2617                 | 0.2914                 | 0.2353                |
| 4.3836 | 20   | 5.3042        | -                      | -                      | -                     |
| 4.8219 | 22   | -             | 0.2626                 | 0.2946                 | 0.2422                |
| 5.9178 | 27   | -             | 0.2629                 | 0.2987                 | 0.2481                |
| 6.5753 | 30   | 4.2433        | -                      | -                      | -                     |
| 6.7945 | 31   | -             | 0.2684                 | 0.2988                 | 0.2495                |
| 7.8904 | 36   | -             | 0.2652                 | 0.3003                 | 0.2488                |
| 8.7671 | 40   | 3.9117        | 0.2653                 | 0.3003                 | 0.2482                |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.0.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->