File size: 22,481 Bytes
60c8205 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
---
base_model: intfloat/multilingual-e5-small
language:
- multilingual
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2320
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'MVGO; medium vacuum
gas oil'
sentences:
- 과분해
- Medium Vacuum Gas Oil(MVGO) ;
- '선적 전 또는 양하 후에 화물창에 잔존하는 소량의 액체화물 양을 결정하는 수학
적인 계산 수식'
- source_sentence: PLE; plain large end
sentences:
- Plain Large End ;
- '부하중 변압기 Tap 변환기 ;
변압기 권선의 Tap을 무정전으로 변경하는 장치'
- Cone Roof Tank에서 Tank내의 Vapor가 외부로 나갈 수 있도록 만들어 놓은 구멍
- source_sentence: Fluidization
sentences:
- '핵심성과지표;
어떤 계획이나 목표가 성공하였는지 또는 성공하고 있는지를 확인하려면 그 성공
을 구성하는 요소들을 측정하는 지표를 찾아 측정하여야 하는데, 이들 지표 중 성
공을 확인할 수 있는 가장 결정적인 지표를 KPI라고 부릅니다.'
- '전압변동에 영향을 주는 무효전력을 줄이기 위한 조상설비의 일종으로 정지형 무
효전력 보상장치'
- 고체층을 액체나 기체로 확대시키거나 현탁시켜 유통하도록 하는 것
- source_sentence: 'SH; surface hardened
steel body'
sentences:
- Surface Hardened Steel Body ;
- 분산제 ; 슬러지 생성을 방지하기 위하여 Oil에 넣어주는 약품
- '작업위험성평가;
현장에서 수행되는 작업을 포함한 전반적인 직무 활동에 대하여 위험요인을 분석
하여 현재 안전조치를 검토하고 안전대책을 마련하는 기법'
- source_sentence: U-205200
sentences:
- 물속의 (-)ion을 OH-로 치환해 주는 이온교환수지탑
- 차단기, 스위치류 , 스위치
- 올레핀 송유/동력 Nitrogen Section
model-index:
- name: Multilingual base soil embedding model (quantized)
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.2441860465116279
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.31007751937984496
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3643410852713178
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4108527131782946
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2441860465116279
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.10335917312661498
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.07286821705426358
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.041085271317829464
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2441860465116279
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.31007751937984496
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3643410852713178
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4108527131782946
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3172493867293268
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.28840746893072483
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3003133446683658
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.2054263565891473
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.28294573643410853
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3178294573643411
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.38372093023255816
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2054263565891473
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09431524547803617
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06356589147286822
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03837209302325582
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2054263565891473
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.28294573643410853
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3178294573643411
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.38372093023255816
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2850988708112555
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.25465270087363123
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.26532412971784447
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.1937984496124031
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2713178294573643
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.29844961240310075
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.3488372093023256
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1937984496124031
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0904392764857881
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.059689922480620154
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03488372093023256
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1937984496124031
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2713178294573643
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.29844961240310075
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3488372093023256
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.26467320016495083
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2385474344776671
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2482312240959752
name: Cosine Map@100
---
# Multilingual base soil embedding model (quantized)
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** multilingual
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ValentinaKim/Multilingual-base-soil-embedding")
# Run inference
sentences = [
'U-205200',
'올레핀 송유/동력 Nitrogen Section',
'차단기, 스위치류 , 스위치',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.2442 |
| cosine_accuracy@3 | 0.3101 |
| cosine_accuracy@5 | 0.3643 |
| cosine_accuracy@10 | 0.4109 |
| cosine_precision@1 | 0.2442 |
| cosine_precision@3 | 0.1034 |
| cosine_precision@5 | 0.0729 |
| cosine_precision@10 | 0.0411 |
| cosine_recall@1 | 0.2442 |
| cosine_recall@3 | 0.3101 |
| cosine_recall@5 | 0.3643 |
| cosine_recall@10 | 0.4109 |
| cosine_ndcg@10 | 0.3172 |
| cosine_mrr@10 | 0.2884 |
| **cosine_map@100** | **0.3003** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.2054 |
| cosine_accuracy@3 | 0.2829 |
| cosine_accuracy@5 | 0.3178 |
| cosine_accuracy@10 | 0.3837 |
| cosine_precision@1 | 0.2054 |
| cosine_precision@3 | 0.0943 |
| cosine_precision@5 | 0.0636 |
| cosine_precision@10 | 0.0384 |
| cosine_recall@1 | 0.2054 |
| cosine_recall@3 | 0.2829 |
| cosine_recall@5 | 0.3178 |
| cosine_recall@10 | 0.3837 |
| cosine_ndcg@10 | 0.2851 |
| cosine_mrr@10 | 0.2547 |
| **cosine_map@100** | **0.2653** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1938 |
| cosine_accuracy@3 | 0.2713 |
| cosine_accuracy@5 | 0.2984 |
| cosine_accuracy@10 | 0.3488 |
| cosine_precision@1 | 0.1938 |
| cosine_precision@3 | 0.0904 |
| cosine_precision@5 | 0.0597 |
| cosine_precision@10 | 0.0349 |
| cosine_recall@1 | 0.1938 |
| cosine_recall@3 | 0.2713 |
| cosine_recall@5 | 0.2984 |
| cosine_recall@10 | 0.3488 |
| cosine_ndcg@10 | 0.2647 |
| cosine_mrr@10 | 0.2385 |
| **cosine_map@100** | **0.2482** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 2,320 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 6.72 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 35.77 tokens</li><li>max: 408 tokens</li></ul> |
* Samples:
| anchor | positive |
|:--------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|
| <code>Deionizer</code> | <code>탈이온장치 ; Demineralizer와 동일</code> |
| <code>Sub-CC; sub-contracting<br>committee</code> | <code>외주 계약의 투명성과 공정성을 확보하기 위한 Sub-계약위원회로서 위원 및 위원<br>장은 CEO가 임명한다. CC이원원 부문장 이상 임원으로 하고 간사는 구매관리팀<br>장이 한다.</code> |
| <code>In-line Sampler</code> | <code>원유 속의 물과 침전물의 함량을 측정하기 위하여 원유하역 Line에 설치해 놓은<br>시료채취기</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: False
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_64_cosine_map@100 |
|:------:|:----:|:-------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.8767 | 4 | - | 0.2156 | 0.2448 | 0.1831 |
| 1.9726 | 9 | - | 0.2511 | 0.2765 | 0.2154 |
| 2.1918 | 10 | 7.6309 | - | - | - |
| 2.8493 | 13 | - | 0.2531 | 0.2852 | 0.2345 |
| 3.9452 | 18 | - | 0.2617 | 0.2914 | 0.2353 |
| 4.3836 | 20 | 5.3042 | - | - | - |
| 4.8219 | 22 | - | 0.2626 | 0.2946 | 0.2422 |
| 5.9178 | 27 | - | 0.2629 | 0.2987 | 0.2481 |
| 6.5753 | 30 | 4.2433 | - | - | - |
| 6.7945 | 31 | - | 0.2684 | 0.2988 | 0.2495 |
| 7.8904 | 36 | - | 0.2652 | 0.3003 | 0.2488 |
| 8.7671 | 40 | 3.9117 | 0.2653 | 0.3003 | 0.2482 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.0.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |