Support our open-source dataset and model releases!

image/jpeg

Esper 3.1 is a coding, architecture, and DevOps reasoning specialist built on Qwen 3.

  • Your dedicated DevOps expert: Esper 3.1 maximizes DevOps and architecture helpfulness, powered by high-difficulty DevOps and architecture data generated with DeepSeek-V3.1-Terminus!
  • Improved coding performance: challenging code-reasoning datasets stretch DeepSeek-V3.1-Terminus and DeepSeek-V3.2 to the limits, allowing Esper 3.1 to tackle harder coding tasks!
  • AI to build AI: our high-difficulty AI expertise data boosts Esper 3.1's MLOps, AI architecture, AI research, and general reasoning skills.
  • Small model sizes allow running on local desktop and mobile, plus super-fast server inference!

Prompting Guide

Esper 3.1 uses the Qwen3-4B-Thinking-2507 prompt format.

Example inference script to get started:

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "ValiantLabs/Qwen3-4B-Thinking-2507-Esper3.1"

# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

# prepare the model input
prompt = "Write a Terraform configuration that uses the `aws_ami` data source to find the latest Amazon Linux 2 AMI. Then, provision an EC2 instance using this dynamically determined AMI ID."
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# conduct text completion
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() 

# parsing thinking content
try:
    # rindex finding 151668 (</think>)
    index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
    index = 0

thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")

print("thinking content:", thinking_content)
print("content:", content)

image/jpeg

Esper 3.1 is created by Valiant Labs.

Check out our HuggingFace page to see all of our models!

We care about open source. For everyone to use.

Downloads last month
164
Safetensors
Model size
4.02B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ValiantLabs/Qwen3-4B-Thinking-2507-Esper3.1

Finetuned
(67)
this model
Quantizations
3 models

Datasets used to train ValiantLabs/Qwen3-4B-Thinking-2507-Esper3.1

Space using ValiantLabs/Qwen3-4B-Thinking-2507-Esper3.1 1