|
--- |
|
language: |
|
- vi |
|
base_model: vinai/phobert-base |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: phobert-base_baseline_words |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# phobert-base_baseline_words |
|
|
|
This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on the covid19_ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0829 |
|
- Patient Id: 0.9848 |
|
- Name: 0.9421 |
|
- Gender: 0.9570 |
|
- Age: 0.9766 |
|
- Job: 0.8095 |
|
- Location: 0.9448 |
|
- Organization: 0.9078 |
|
- Date: 0.9869 |
|
- Symptom And Disease: 0.8923 |
|
- Transportation: 0.9943 |
|
- F1 Macro: 0.9396 |
|
- F1 Micro: 0.9498 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Patient Id | Name | Gender | Age | Job | Location | Organization | Date | Symptom And Disease | Transportation | F1 Macro | F1 Micro | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:------:|:------:|:------:|:--------:|:------------:|:------:|:-------------------:|:--------------:|:--------:|:--------:| |
|
| 0.2964 | 1.0 | 629 | 0.1215 | 0.9689 | 0.9534 | 0.9107 | 0.8987 | 0.5357 | 0.9350 | 0.8368 | 0.9856 | 0.8584 | 0.9667 | 0.8850 | 0.9251 | |
|
| 0.068 | 2.0 | 1258 | 0.0890 | 0.9844 | 0.9479 | 0.9487 | 0.9723 | 0.6167 | 0.9377 | 0.8815 | 0.9860 | 0.8835 | 0.9886 | 0.9147 | 0.9409 | |
|
| 0.0441 | 3.0 | 1887 | 0.0847 | 0.9828 | 0.9446 | 0.9554 | 0.9737 | 0.7570 | 0.9445 | 0.9062 | 0.9874 | 0.8909 | 0.9943 | 0.9337 | 0.9482 | |
|
| 0.0327 | 4.0 | 2516 | 0.0859 | 0.9859 | 0.9449 | 0.9570 | 0.9765 | 0.7778 | 0.9451 | 0.9062 | 0.9874 | 0.8914 | 0.9943 | 0.9366 | 0.9495 | |
|
| 0.0259 | 5.0 | 3145 | 0.0829 | 0.9848 | 0.9421 | 0.9570 | 0.9766 | 0.8095 | 0.9448 | 0.9078 | 0.9869 | 0.8923 | 0.9943 | 0.9396 | 0.9498 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|