Venkatesh4342's picture
End of training
8884f5c verified
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - Emo-Codec/CREMA-D_synth
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: distilhubert-tone-classification
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: CREMA-D
          type: Emo-Codec/CREMA-D_synth
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6809651474530831
          - name: Precision
            type: precision
            value: 0.6795129218164245
          - name: Recall
            type: recall
            value: 0.6809651474530831
          - name: F1
            type: f1
            value: 0.6750238551197275

distilhubert-tone-classification

This model is a fine-tuned version of ntu-spml/distilhubert on the CREMA-D dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1796
  • Accuracy: 0.6810
  • Precision: 0.6795
  • Recall: 0.6810
  • F1: 0.6750

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.3122 1.0 442 1.1656 0.5737 0.5887 0.5737 0.5679
1.0131 2.0 884 0.9625 0.6461 0.6572 0.6461 0.6399
0.7817 3.0 1326 1.0005 0.6381 0.6506 0.6381 0.6249
0.6087 4.0 1768 0.9428 0.6649 0.6572 0.6649 0.6515
0.4604 5.0 2210 1.0250 0.6622 0.6710 0.6622 0.6545
0.3164 6.0 2652 1.0814 0.6783 0.6821 0.6783 0.6656
0.2127 7.0 3094 1.1286 0.6971 0.6991 0.6971 0.6909
0.1224 8.0 3536 1.1796 0.6810 0.6795 0.6810 0.6750

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1