|
--- |
|
language: vi |
|
datasets: |
|
- cc100 |
|
tags: |
|
- summarization |
|
- translation |
|
- question-answering |
|
|
|
license: mit |
|
--- |
|
|
|
# ViT5-base |
|
|
|
State-of-the-art pretrained Transformer-based encoder-decoder model for Vietnamese. |
|
|
|
## How to use |
|
For more details, do check out [our Github repo](https://github.com/vietai/ViT5). |
|
|
|
[Finetunning Example can be found here](https://github.com/vietai/ViT5/tree/main/finetunning_huggingface). |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-base") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-base") |
|
model.cuda() |
|
``` |
|
|
|
## Citation |
|
``` |
|
@inproceedings{phan-etal-2022-vit5, |
|
title = "{V}i{T}5: Pretrained Text-to-Text Transformer for {V}ietnamese Language Generation", |
|
author = "Phan, Long and Tran, Hieu and Nguyen, Hieu and Trinh, Trieu H.", |
|
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop", |
|
year = "2022", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2022.naacl-srw.18", |
|
pages = "136--142", |
|
} |
|
``` |