razent's picture
Update README.md
7a9dc7e
|
raw
history blame
1.66 kB
metadata
language: vi
datasets:
  - cc100
tags:
  - summarization
license: mit
widget:
  - text: >-
      summarization: VietAI là tổ chức phi lợi nhuận với sứ mệnh ươm mầm tài
      năng về trí tuệ nhân tạo và xây dựng một cộng đồng các chuyên gia trong
      lĩnh vực trí tuệ nhân tạo đẳng cấp quốc tế tại Việt Nam.

ViT5-large Finetuned on vietnews Abstractive Summarization

State-of-the-art pretrained Transformer-based encoder-decoder model for Vietnamese.

How to use

For more details, do check out our Github repo.

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
​
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-large-vietnews-summarization")  
model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-large-vietnews-summarization")
​
sentence = "VietAI là tổ chức phi lợi nhuận với sứ mệnh ươm mầm tài năng về trí tuệ nhân tạo và xây dựng một cộng đồng các chuyên gia trong lĩnh vực trí tuệ nhân tạo đẳng cấp quốc tế tại Việt Nam."
text =  "summarize: " + sentence + " </s>"
encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
    input_ids=input_ids, attention_mask=attention_masks,
    max_length=256,
    early_stopping=True
)
for output in outputs:
    line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
    print(line)

Citation

Coming Soon...