ViktorDo's picture
update model card README.md
9b611ee
|
raw
history blame
1.7 kB
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: DeBERTa-finetuned-ner-S800
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DeBERTa-finetuned-ner-S800
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0667
- Precision: 0.6659
- Recall: 0.7619
- F1: 0.7106
- Accuracy: 0.9781
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 55 | 0.0751 | 0.6379 | 0.6218 | 0.6298 | 0.9723 |
| No log | 2.0 | 110 | 0.0675 | 0.6869 | 0.7465 | 0.7154 | 0.9772 |
| No log | 3.0 | 165 | 0.0667 | 0.6659 | 0.7619 | 0.7106 | 0.9781 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3