results

This model is a fine-tuned version of apple/mobilevit-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9863
  • Accuracy: 0.7512

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0008
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4609 0.2844 5000 1.3989 0.6532
1.3211 0.5689 10000 1.2739 0.6803
1.2531 0.8533 15000 1.2132 0.6942
1.1875 1.1377 20000 1.1762 0.7041
1.157 1.4222 25000 1.1460 0.7111
1.144 1.7066 30000 1.1184 0.7163
1.1217 1.9910 35000 1.0880 0.7247
1.0831 2.2754 40000 1.0729 0.7280
1.0761 2.5599 45000 1.0593 0.7312
1.0565 2.8443 50000 1.0480 0.7346
1.0149 3.1287 55000 1.0356 0.7380
1.0102 3.4132 60000 1.0263 0.7401
1.0014 3.6976 65000 1.0122 0.7437
0.9972 3.9820 70000 1.0028 0.7459
0.9556 4.2665 75000 0.9971 0.7474
0.9606 4.5509 80000 0.9904 0.7496
0.9544 4.8353 85000 0.9842 0.7507

Framework versions

  • Transformers 4.57.3
  • Pytorch 2.9.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
27
Safetensors
Model size
5.17M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for VinayHajare/quickdraw-mobilevit-small

Quantized
(4)
this model

Evaluation results