|
--- |
|
library_name: peft |
|
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
|
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
|
|
|
|
- **Developed by:** [More Information Needed] |
|
- **Funded by [optional]:** [More Information Needed] |
|
- **Shared by [optional]:** [More Information Needed] |
|
- **Model type:** [More Information Needed] |
|
- **Language(s) (NLP):** [More Information Needed] |
|
- **License:** [More Information Needed] |
|
- **Finetuned from model [optional]:** [More Information Needed] |
|
|
|
### Infrence function |
|
|
|
def generate(review,category): |
|
# Define the roles and markers |
|
# Define the roles and markers |
|
B_INST, E_INST = "[INST]", "[/INST]" |
|
B_RW, E_RW = "[RW]", "[/RW]" |
|
|
|
|
|
user_prompt = f'Summarize the reviews for {category} category.' ### custom prompt here |
|
|
|
# Format your prompt template |
|
# prompt = f"{B_FUNC}{functionList.strip()}{E_FUNC}{B_INST} {user_prompt.strip()} {E_INST} Hello! Life is good, thanks for asking {B_INST} {user_prompt2.strip()} {E_INST} The most fun dog is the Labrador Retriever {B_INST} {user_prompt3.strip()} {E_INST}\n\n" |
|
prompt = f"{B_INST} {user_prompt.strip()} {E_INST}\n\n {B_RW} {review.strip()} {E_RW}\n" |
|
|
|
print("Prompt:") |
|
print(prompt) |
|
|
|
encoding = tokenizer(prompt, return_tensors="pt").to("cuda:0") |
|
output = model.generate(input_ids=encoding.input_ids, |
|
attention_mask=encoding.attention_mask, |
|
max_new_tokens=200, |
|
do_sample=True, |
|
temperature=0.01, |
|
eos_token_id=tokenizer.eos_token_id, |
|
top_k=0) |
|
|
|
print() |
|
|
|
# Subtract the length of input_ids from output to get only the model's response |
|
output_text = tokenizer.decode(output[0, len(encoding.input_ids[0]):], skip_special_tokens=False) |
|
output_text = re.sub('\n+', '\n', output_text) # remove excessive newline characters |
|
|
|
print("Generated Assistant Response:") |
|
print(output_text) |
|
|
|
return output_text |