Vishnu-add/distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1999
- Validation Loss: 0.0736
- Train Precision: 0.9035
- Train Recall: 0.9153
- Train F1: 0.9094
- Train Accuracy: 0.9786
- Epoch: 0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
---|---|---|---|---|---|---|
0.1999 | 0.0736 | 0.9035 | 0.9153 | 0.9094 | 0.9786 | 0 |
Framework versions
- Transformers 4.34.1
- TensorFlow 2.12.0
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Vishnu-add/distilbert-base-uncased-finetuned-ner
Base model
distilbert/distilbert-base-uncased