Vishnu-add/distilbert-base-uncased-finetuned-ner

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1999
  • Validation Loss: 0.0736
  • Train Precision: 0.9035
  • Train Recall: 0.9153
  • Train F1: 0.9094
  • Train Accuracy: 0.9786
  • Epoch: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
0.1999 0.0736 0.9035 0.9153 0.9094 0.9786 0

Framework versions

  • Transformers 4.34.1
  • TensorFlow 2.12.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Vishnu-add/distilbert-base-uncased-finetuned-ner

Finetuned
(7474)
this model