VladS159's picture
End of training
1e5efb6 verified
metadata
language:
  - ro
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: Whisper Small Ro - Sarbu Vlad
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16.1
          type: mozilla-foundation/common_voice_16_1
          args: 'config: ro, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 18.664730616813383

Whisper Small Ro - Sarbu Vlad

This model is a fine-tuned version of openai/whisper-small on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2920
  • Wer: 18.6647

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • total_train_batch_size: 96
  • total_eval_batch_size: 48
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1437 3.91 500 0.2167 20.5100
0.0268 7.81 1000 0.2202 18.6557
0.008 11.72 1500 0.2478 18.6829
0.0037 15.62 2000 0.2644 18.6708
0.0024 19.53 2500 0.2761 18.6405
0.0018 23.44 3000 0.2844 18.6859
0.0016 27.34 3500 0.2900 18.6799
0.0014 31.25 4000 0.2920 18.6647

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0
  • Datasets 2.17.0
  • Tokenizers 0.15.1