Edit model card

clm-model

This model is a fine-tuned version of emilyalsentzer/Bio_ClinicalBERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 38 0.0088
No log 2.0 76 0.0007
No log 3.0 114 0.0003
No log 4.0 152 0.0013
No log 5.0 190 0.0000
No log 6.0 228 0.0002
No log 7.0 266 0.0100
No log 8.0 304 0.0000
No log 9.0 342 0.0000
No log 10.0 380 0.0000
No log 11.0 418 0.0000
No log 12.0 456 0.0000
No log 13.0 494 0.0000
0.0057 14.0 532 0.0007
0.0057 15.0 570 0.0000
0.0057 16.0 608 0.0000
0.0057 17.0 646 0.0000
0.0057 18.0 684 0.0000
0.0057 19.0 722 0.0000
0.0057 20.0 760 0.0000
0.0057 21.0 798 0.0000
0.0057 22.0 836 0.0000
0.0057 23.0 874 0.0000
0.0057 24.0 912 0.0000
0.0057 25.0 950 0.0000
0.0057 26.0 988 0.0000
0.0018 27.0 1026 0.0000
0.0018 28.0 1064 0.0000
0.0018 29.0 1102 0.0000
0.0018 30.0 1140 0.0000
0.0018 31.0 1178 0.0000
0.0018 32.0 1216 0.0000
0.0018 33.0 1254 0.0000
0.0018 34.0 1292 0.0000
0.0018 35.0 1330 0.0000
0.0018 36.0 1368 0.0000
0.0018 37.0 1406 0.0000
0.0018 38.0 1444 0.0000
0.0018 39.0 1482 0.0000
0.0005 40.0 1520 0.0000
0.0005 41.0 1558 0.0000
0.0005 42.0 1596 0.0000
0.0005 43.0 1634 0.0000
0.0005 44.0 1672 0.0000
0.0005 45.0 1710 0.0000
0.0005 46.0 1748 0.0000
0.0005 47.0 1786 0.0000
0.0005 48.0 1824 0.0000
0.0005 49.0 1862 0.0000
0.0005 50.0 1900 0.0000

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.