Aya model summary image

Model Card for Aya 101

Model Summary

The Aya model is a massively multilingual generative language model that follows instructions in 101 languages. Aya outperforms mT0 and BLOOMZ a wide variety of automatic and human evaluations despite covering double the number of languages. The Aya model is trained using xP3x, Aya Dataset, Aya Collection, a subset of DataProvenance collection and ShareGPT-Command. We release the checkpoints under a Apache-2.0 license to further our mission of multilingual technologies empowering a multilingual world.

Use

# pip install -q transformers
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

checkpoint = "CohereForAI/aya-101"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
aya_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)

# Turkish to English translation
tur_inputs = tokenizer.encode("Translate to English: Aya cok dilli bir dil modelidir.", return_tensors="pt")
tur_outputs = aya_model.generate(tur_inputs, max_new_tokens=128)
print(tokenizer.decode(tur_outputs[0]))
# Aya is a multi-lingual language model

# Q: Why are there so many languages in India?
hin_inputs = tokenizer.encode("भारत में इतनी सारी भाषाएँ क्यों हैं?", return_tensors="pt")
hin_outputs = aya_model.generate(hin_inputs, max_new_tokens=128)
print(tokenizer.decode(hin_outputs[0]))
# Expected output: भारत में कई भाषाएँ हैं और विभिन्न भाषाओं के बोली जाने वाले लोग हैं। यह विभिन्नता भाषाई विविधता और सांस्कृतिक विविधता का परिणाम है। Translates to "India has many languages and people speaking different languages. This diversity is the result of linguistic diversity and cultural diversity."

Model Details

Finetuning

  • Architecture: Same as mt5-xxl
  • Number of Samples seen during Finetuning: 25M
  • Batch size: 256
  • Hardware: TPUv4-128
  • Software: T5X, Jax

Data Sources

The Aya model is trained on the following datasets:

All datasets are subset to the 101 languages supported by mT5. See the paper for details about filtering and pruning.

Evaluation

We refer to Section 5 from our paper for multilingual eval across 99 languages – including discriminative and generative tasks, human evaluation, and simulated win rates that cover both held-out tasks and in-distribution performance.

Bias, Risks, and Limitations

For a detailed overview of our effort at safety mitigation and benchmarking toxicity and bias across multiple languages, we refer to Sections 6 and 7 of our paper: Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model.

We hope that the release of the Aya model will make community-based redteaming efforts possible, by exposing an open-source massively-multilingual model for community research.

Citation

BibTeX:

@article{üstün2024aya,
  title={Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model},
  author={Ahmet Üstün and Viraat Aryabumi and Zheng-Xin Yong and Wei-Yin Ko and Daniel D'souza and Gbemileke Onilude and Neel Bhandari and Shivalika Singh and Hui-Lee Ooi and Amr Kayid and Freddie Vargus and Phil Blunsom and Shayne Longpre and Niklas Muennighoff and Marzieh Fadaee and Julia Kreutzer and Sara Hooker},
  journal={arXiv preprint arXiv:2402.07827},
  year={2024}
}

Languages Covered

Click to see Languages Covered

Below is the list of languages used in finetuning the Aya Model. We group languages into higher-, mid-, and lower-resourcedness based on a language classification by Joshi et. al, 2020. For further details, we refer to our paper

ISO Code Language Name Script Family Subgrouping Resourcedness
afr Afrikaans Latin Indo-European Germanic Mid
amh Amharic Ge'ez Afro-Asiatic Semitic Low
ara Arabic Arabic Afro-Asiatic Semitic High
aze Azerbaijani Arabic/Latin Turkic Common Turkic Low
bel Belarusian Cyrillic Indo-European Balto-Slavic Mid
ben Bengali Bengali Indo-European Indo-Aryan Mid
bul Bulgarian Cyrillic Indo-European Balto-Slavic Mid
cat Catalan Latin Indo-European Italic High
ceb Cebuano Latin Austronesian Malayo-Polynesian Mid
ces Czech Latin Indo-European Balto-Slavic High
cym Welsh Latin Indo-European Celtic Low
dan Danish Latin Indo-European Germanic Mid
deu German Latin Indo-European Germanic High
ell Greek Greek Indo-European Graeco-Phrygian Mid
eng English Latin Indo-European Germanic High
epo Esperanto Latin Constructed Esperantic Low
est Estonian Latin Uralic Finnic Mid
eus Basque Latin Basque - High
fin Finnish Latin Uralic Finnic High
fil Tagalog Latin Austronesian Malayo-Polynesian Mid
fra French Latin Indo-European Italic High
fry Western Frisian Latin Indo-European Germanic Low
gla Scottish Gaelic Latin Indo-European Celtic Low
gle Irish Latin Indo-European Celtic Low
glg Galician Latin Indo-European Italic Mid
guj Gujarati Gujarati Indo-European Indo-Aryan Low
hat Haitian Creole Latin Indo-European Italic Low
hau Hausa Latin Afro-Asiatic Chadic Low
heb Hebrew Hebrew Afro-Asiatic Semitic Mid
hin Hindi Devanagari Indo-European Indo-Aryan High
hun Hungarian Latin Uralic - High
hye Armenian Armenian Indo-European Armenic Low
ibo Igbo Latin Atlantic-Congo Benue-Congo Low
ind Indonesian Latin Austronesian Malayo-Polynesian Mid
isl Icelandic Latin Indo-European Germanic Low
ita Italian Latin Indo-European Italic High
jav Javanese Latin Austronesian Malayo-Polynesian Low
jpn Japanese Japanese Japonic Japanesic High
kan Kannada Kannada Dravidian South Dravidian Low
kat Georgian Georgian Kartvelian Georgian-Zan Mid
kaz Kazakh Cyrillic Turkic Common Turkic Mid
khm Khmer Khmer Austroasiatic Khmeric Low
kir Kyrgyz Cyrillic Turkic Common Turkic Low
kor Korean Hangul Koreanic Korean High
kur Kurdish Latin Indo-European Iranian Low
lao Lao Lao Tai-Kadai Kam-Tai Low
lav Latvian Latin Indo-European Balto-Slavic Mid
lat Latin Latin Indo-European Italic Mid
lit Lithuanian Latin Indo-European Balto-Slavic Mid
ltz Luxembourgish Latin Indo-European Germanic Low
mal Malayalam Malayalam Dravidian South Dravidian Low
mar Marathi Devanagari Indo-European Indo-Aryan Low
mkd Macedonian Cyrillic Indo-European Balto-Slavic Low
mlg Malagasy Latin Austronesian Malayo-Polynesian Low
mlt Maltese Latin Afro-Asiatic Semitic Low
mon Mongolian Cyrillic Mongolic-Khitan Mongolic Low
mri Maori Latin Austronesian Malayo-Polynesian Low
msa Malay Latin Austronesian Malayo-Polynesian Mid
mya Burmese Myanmar Sino-Tibetan Burmo-Qiangic Low
nep Nepali Devanagari Indo-European Indo-Aryan Low
nld Dutch Latin Indo-European Germanic High
nor Norwegian Latin Indo-European Germanic Low
nso Northern Sotho Latin Atlantic-Congo Benue-Congo Low
nya Chichewa Latin Atlantic-Congo Benue-Congo Low
ory Oriya Oriya Indo-European Indo-Aryan Low
pan Punjabi Gurmukhi Indo-European Indo-Aryan Low
pes Persian Arabic Indo-European Iranian High
pol Polish Latin Indo-European Balto-Slavic High
por Portuguese Latin Indo-European Italic High
pus Pashto Arabic Indo-European Iranian Low
ron Romanian Latin Indo-European Italic Mid
rus Russian Cyrillic Indo-European Balto-Slavic High
sin Sinhala Sinhala Indo-European Indo-Aryan Low
slk Slovak Latin Indo-European Balto-Slavic Mid
slv Slovenian Latin Indo-European Balto-Slavic Mid
smo Samoan Latin Austronesian Malayo-Polynesian Low
sna Shona Latin Indo-European Indo-Aryan Low
snd Sindhi Arabic Indo-European Indo-Aryan Low
som Somali Latin Afro-Asiatic Cushitic Low
sot Southern Sotho Latin Atlantic-Congo Benue-Congo Low
spa Spanish Latin Indo-European Italic High
sqi Albanian Latin Indo-European Albanian Low
srp Serbian Cyrillic Indo-European Balto-Slavic High
sun Sundanese Latin Austronesian Malayo-Polynesian Low
swa Swahili Latin Atlantic-Congo Benue-Congo Low
swe Swedish Latin Indo-European Germanic High
tam Tamil Tamil Dravidian South Dravidian Mid
tel Telugu Telugu Dravidian South Dravidian Low
tgk Tajik Cyrillic Indo-European Iranian Low
tha Thai Thai Tai-Kadai Kam-Tai Mid
tur Turkish Latin Turkic Common Turkic High
twi Twi Latin Atlantic-Congo Niger-Congo Low
ukr Ukrainian Cyrillic Indo-European Balto-Slavic Mid
urd Urdu Arabic Indo-European Indo-Aryan Mid
uzb Uzbek Latin Turkic Common Turkic Mid
vie Vietnamese Latin Austroasiatic Vietic High
xho Xhosa Latin Atlantic-Congo Benue-Congo Low
yid Yiddish Hebrew Indo-European Germanic Low
yor Yoruba Latin Atlantic-Congo Benue-Congo Low
zho Chinese Han Sino-Tibetan Sinitic High
zul Zulu Latin Atlantic-Congo Benue-Congo Low

Model Card Contact

For errors in this model card, contact Ahmet or Viraat, {ahmet, viraat} at cohere dot com.

Downloads last month
8
Safetensors
Model size
12.9B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train Wanxai/japollo-translator