Edit model card

Whisper Base Danish - WasuratS

This model is a fine-tuned version of openai/whisper-base on the Common Voice 13 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9795
  • Wer Ortho: 45.5986
  • Wer: 39.7363

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 6000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.5156 1.61 500 0.7387 47.8293 42.2586
0.2086 3.22 1000 0.7157 46.7087 41.0652
0.1439 4.82 1500 0.7300 46.5367 40.9610
0.0514 6.43 2000 0.7804 45.2963 39.5279
0.027 8.04 2500 0.8314 46.3126 40.3825
0.0133 9.65 3000 0.8739 44.8585 39.2777
0.0053 11.25 3500 0.9081 45.4839 39.7103
0.0041 12.86 4000 0.9347 45.4110 39.7050
0.0028 14.47 4500 0.9535 46.0624 40.3096
0.0024 16.08 5000 0.9673 45.6351 39.8979
0.0021 17.68 5500 0.9762 45.7862 39.9187
0.002 19.29 6000 0.9795 45.5986 39.7363

Framework versions

  • Transformers 4.29.2
  • Pytorch 1.13.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
23
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train WasuratS/whisper-base-danish-finetune-common-voice-11

Evaluation results