image/jpeg

🔬 Einstein-7B

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on datasets related to science.

This model is fine-tuned using QLoRa and axolotl.

This model's training was sponsored by sablo.ai.

See axolotl config

axolotl version: 0.3.0

base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: sci-datasets/arc_challange_train_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/camelai_biology_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/camelai_chemistry_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/camelai_physics_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/openbookqa_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/reclor_science_alpaca.json
    ds_type: json
    type: alpaca
    
  - path: sci-datasets/scibench_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/scienceqa_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/theoremqa_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/tiger_scienceeval_alpaca.json
    ds_type: json
    type: alpaca

dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./science-mistral

adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

lora_r: 128
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: huggingface
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: Weyaxi/science-mistral

# change #
gradient_accumulation_steps: 12
micro_batch_size: 6
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
# change #

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10


saves_per_epoch: 3
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

📊 Datasets

Following datasets were used in this model:

💬 Prompt Template

You can use this prompt template while using the model:

Alpaca

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:

🤝 Acknowledgments

Thanks to Platypus for providing scripts to convert some of the datasets to Alpaca format: Platypus/data_pipeline

Thanks to all the dataset authors mentioned in the datasets section.

Thanks to axolotl for making the repository I used to make this model.

Built with Axolotl

If you would like to support me:

☕ Buy Me a Coffee

Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Weyaxi/Einstein-7B

Finetuned
(814)
this model
Quantizations
3 models

Datasets used to train Weyaxi/Einstein-7B

Collection including Weyaxi/Einstein-7B