|
---
|
|
license: apache-2.0
|
|
pipeline_tag: text-generation
|
|
language:
|
|
- ru
|
|
tags:
|
|
- generated_from_trainer
|
|
base_model: mistralai/Mistral-7B-v0.1
|
|
datasets:
|
|
- danasone/wikipedia_ru
|
|
model-index:
|
|
- name: Mistral-7B-wikipedia_ru_pruned-0.1_merged
|
|
results: []
|
|
---
|
|
|
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
|
<details><summary>See axolotl config</summary>
|
|
|
|
axolotl version: `0.4.0`
|
|
```yaml
|
|
base_model: mistralai/Mistral-7B-v0.1
|
|
model_type: MistralForCausalLM
|
|
tokenizer_type: LlamaTokenizer
|
|
is_mistral_derived_model: true
|
|
|
|
load_in_8bit: false
|
|
load_in_4bit: true
|
|
strict: false
|
|
|
|
datasets:
|
|
- path: ./datasets/ruwiki-pruned
|
|
type: completion
|
|
field: text
|
|
dataset_prepared_path: last_run_prepared
|
|
val_set_size: 0.01
|
|
output_dir: ./models/output
|
|
|
|
adapter: qlora
|
|
lora_model_dir:
|
|
|
|
sequence_len: 1024
|
|
sample_packing: true
|
|
pad_to_sequence_len: true
|
|
|
|
lora_r: 32
|
|
lora_alpha: 16
|
|
lora_dropout: 0.05
|
|
lora_target_linear: true
|
|
lora_fan_in_fan_out:
|
|
lora_target_modules:
|
|
- gate_proj
|
|
- down_proj
|
|
- up_proj
|
|
- q_proj
|
|
- v_proj
|
|
- k_proj
|
|
- o_proj
|
|
|
|
wandb_project:
|
|
wandb_entity:
|
|
wandb_watch:
|
|
wandb_name:
|
|
wandb_log_model:
|
|
|
|
gradient_accumulation_steps: 1
|
|
micro_batch_size: 11
|
|
num_epochs: 1
|
|
optimizer: adamw_bnb_8bit
|
|
lr_scheduler: cosine
|
|
learning_rate: 0.0002
|
|
|
|
train_on_inputs: false
|
|
group_by_length: false
|
|
bf16: auto
|
|
fp16:
|
|
tf32: false
|
|
|
|
gradient_checkpointing: true
|
|
early_stopping_patience:
|
|
resume_from_checkpoint:
|
|
local_rank:
|
|
logging_steps:
|
|
xformers_attention:
|
|
flash_attention: true
|
|
|
|
loss_watchdog_threshold: 5.0
|
|
loss_watchdog_patience: 3
|
|
|
|
warmup_steps: 10
|
|
evals_per_epoch:
|
|
eval_table_size:
|
|
eval_max_new_tokens: 128
|
|
saves_per_epoch: 1
|
|
debug:
|
|
deepspeed:
|
|
weight_decay: 0.0
|
|
fsdp:
|
|
fsdp_config:
|
|
special_tokens:
|
|
|
|
```
|
|
|
|
</details><br>
|
|
|
|
# Mistral-7B-wikipedia_ru_pruned-0.1_merged
|
|
|
|
This model is a merge of [WlappaAI/Mistral-7B-v0.1-wikipedia_ru_pruned-0.1](https://huggingface.co/WlappaAI/Mistral-7B-v0.1-wikipedia_ru_pruned-0.1) together with [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). It's trained on modified [danasone/wikipedia_ru](https://huggingface.co/datasets/danasone/wikipedia_ru) dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 1.1876
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.0002
|
|
- train_batch_size: 11
|
|
- eval_batch_size: 11
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: cosine
|
|
- lr_scheduler_warmup_steps: 10
|
|
- num_epochs: 1
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss |
|
|
|:-------------:|:-----:|:----:|:---------------:|
|
|
| 1.5643 | 0.0 | 0 | |
|
|
| 1.012 | 1.0 | 1100 | 1.1876 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- PEFT 0.10.0
|
|
- Transformers 4.40.0.dev0
|
|
- Pytorch 2.2.2+cu121
|
|
- Datasets 2.18.0
|
|
- Tokenizers 0.15.0 |