metadata
base_model:
- Writer/Palmyra-X-004
model-index:
- name: Palmyra-X-4.3
results: []
license: other
license_name: writer-open-model-license
license_link: https://writer.com/legal/open-model-license/
extra_gated_prompt: >-
By clicking "Agree", you agree to the [License
Agreement](https://writer.com/legal/open-model-license/) and acknowledge
Writer's [Privacy Policy](https://writer.com/legal/acceptable-use/).
extra_gated_fields:
Name: text
Email: text
Organization or Affiliation: text
Receive email updates and promotions on Writer products, services, and research?:
type: select
options:
- 'Yes'
- 'No'
I acknowledge that this model is for non-commercial use only unless I acquire a separate license from Writer: checkbox
language:
- en
Palmyra-X-4.3
Use with transformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "Writer/Palmyra-X-4.3-73B"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="flash_attention_2",
trust_remote_code=True,
)
messages = [
{
"role": "user",
"content": "Write a blog post about strangelets",
},
]
input_ids = tokenizer.apply_chat_template(
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
)
gen_conf = {
"max_new_tokens": 256,
"eos_token_id": tokenizer.eos_token_id,
"temperature": 0.7,
"top_p": 0.9,
}
with torch.inference_mode():
output_id = model.generate(input_ids, **gen_conf)
output_text = tokenizer.decode(output_id[0][input_ids.shape[1] :])
print(output_text)