LICENSE DELETED
@@ -1,126 +0,0 @@
1
- LLAMA 2 COMMUNITY LICENSE AGREEMENT
2
- Llama 2 Version Release Date: July 18, 2023
3
-
4
- "Agreement" means the terms and conditions for use, reproduction, distribution and
5
- modification of the Llama Materials set forth herein.
6
-
7
- "Documentation" means the specifications, manuals and documentation
8
- accompanying Llama 2 distributed by Meta at ai.meta.com/resources/models-and-
9
- libraries/llama-downloads/.
10
-
11
- "Licensee" or "you" means you, or your employer or any other person or entity (if
12
- you are entering into this Agreement on such person or entity's behalf), of the age
13
- required under applicable laws, rules or regulations to provide legal consent and that
14
- has legal authority to bind your employer or such other person or entity if you are
15
- entering in this Agreement on their behalf.
16
-
17
- "Llama 2" means the foundational large language models and software and
18
- algorithms, including machine-learning model code, trained model weights,
19
- inference-enabling code, training-enabling code, fine-tuning enabling code and other
20
- elements of the foregoing distributed by Meta at ai.meta.com/resources/models-and-
21
- libraries/llama-downloads/.
22
-
23
- "Llama Materials" means, collectively, Meta's proprietary Llama 2 and
24
- Documentation (and any portion thereof) made available under this Agreement.
25
-
26
- "Meta" or "we" means Meta Platforms Ireland Limited (if you are located in or, if you
27
- are an entity, your principal place of business is in the EEA or Switzerland) and Meta
28
- Platforms, Inc. (if you are located outside of the EEA or Switzerland).
29
-
30
- By clicking "I Accept" below or by using or distributing any portion or element of the
31
- Llama Materials, you agree to be bound by this Agreement.
32
-
33
- 1. License Rights and Redistribution.
34
-
35
- a. Grant of Rights. You are granted a non-exclusive, worldwide, non-
36
- transferable and royalty-free limited license under Meta's intellectual property or
37
- other rights owned by Meta embodied in the Llama Materials to use, reproduce,
38
- distribute, copy, create derivative works of, and make modifications to the Llama
39
- Materials.
40
-
41
- b. Redistribution and Use.
42
-
43
- i. If you distribute or make the Llama Materials, or any derivative works
44
- thereof, available to a third party, you shall provide a copy of this Agreement to such
45
- third party.
46
- ii. If you receive Llama Materials, or any derivative works thereof, from
47
- a Licensee as part of an integrated end user product, then Section 2 of this
48
- Agreement will not apply to you.
49
-
50
- iii. You must retain in all copies of the Llama Materials that you
51
- distribute the following attribution notice within a "Notice" text file distributed as a
52
- part of such copies: "Llama 2 is licensed under the LLAMA 2 Community License,
53
- Copyright (c) Meta Platforms, Inc. All Rights Reserved."
54
-
55
- iv. Your use of the Llama Materials must comply with applicable laws
56
- and regulations (including trade compliance laws and regulations) and adhere to the
57
- Acceptable Use Policy for the Llama Materials (available at
58
- https://ai.meta.com/llama/use-policy), which is hereby incorporated by reference into
59
- this Agreement.
60
-
61
- v. You will not use the Llama Materials or any output or results of the
62
- Llama Materials to improve any other large language model (excluding Llama 2 or
63
- derivative works thereof).
64
-
65
- 2. Additional Commercial Terms. If, on the Llama 2 version release date, the
66
- monthly active users of the products or services made available by or for Licensee,
67
- or Licensee's affiliates, is greater than 700 million monthly active users in the
68
- preceding calendar month, you must request a license from Meta, which Meta may
69
- grant to you in its sole discretion, and you are not authorized to exercise any of the
70
- rights under this Agreement unless or until Meta otherwise expressly grants you
71
- such rights.
72
-
73
- 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE
74
- LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE
75
- PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
76
- EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY
77
- WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR
78
- FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE
79
- FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING
80
- THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR
81
- USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.
82
-
83
- 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE
84
- LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT,
85
- NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS
86
- AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL,
87
- CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN
88
- IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF
89
- ANY OF THE FOREGOING.
90
-
91
- 5. Intellectual Property.
92
-
93
- a. No trademark licenses are granted under this Agreement, and in
94
- connection with the Llama Materials, neither Meta nor Licensee may use any name
95
- or mark owned by or associated with the other or any of its affiliates, except as
96
- required for reasonable and customary use in describing and redistributing the
97
- Llama Materials.
98
-
99
- b. Subject to Meta's ownership of Llama Materials and derivatives made by or
100
- for Meta, with respect to any derivative works and modifications of the Llama
101
- Materials that are made by you, as between you and Meta, you are and will be the
102
- owner of such derivative works and modifications.
103
-
104
- c. If you institute litigation or other proceedings against Meta or any entity
105
- (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama
106
- Materials or Llama 2 outputs or results, or any portion of any of the foregoing,
107
- constitutes infringement of intellectual property or other rights owned or licensable
108
- by you, then any licenses granted to you under this Agreement shall terminate as of
109
- the date such litigation or claim is filed or instituted. You will indemnify and hold
110
- harmless Meta from and against any claim by any third party arising out of or related
111
- to your use or distribution of the Llama Materials.
112
-
113
- 6. Term and Termination. The term of this Agreement will commence upon your
114
- acceptance of this Agreement or access to the Llama Materials and will continue in
115
- full force and effect until terminated in accordance with the terms and conditions
116
- herein. Meta may terminate this Agreement if you are in breach of any term or
117
- condition of this Agreement. Upon termination of this Agreement, you shall delete
118
- and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the
119
- termination of this Agreement.
120
-
121
- 7. Governing Law and Jurisdiction. This Agreement will be governed and
122
- construed under the laws of the State of California without regard to choice of law
123
- principles, and the UN Convention on Contracts for the International Sale of Goods
124
- does not apply to this Agreement. The courts of California shall have exclusive
125
- jurisdiction of any dispute arising out of this Agreement.
126
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,15 +1,9 @@
1
  ---
2
- language:
3
- - code
4
- pipeline_tag: text-generation
5
  tags:
6
- - llama-2
7
- - function calling
8
- license: llama2
9
  ---
10
- # **XAgent Llama**
11
-
12
- XAgentLlaMa is a collection of fine-tuned generative text models ranging in scale from 7 billion to 34 billion based on Llama 2 and Code Llama.
13
  This is the repository for the 7B fine-tuned model, optimized for XAgent with strong function call ability.
14
 
15
  ## Warning: This is a preview version of the model, does not stand for final quality.
@@ -74,85 +68,4 @@ This model is trained with a special function call format, and should be used wi
74
  }
75
  }
76
  ```
77
- If the json format of `global_arguments` is provided, the output will contains the `global_arguments` at any time.
78
-
79
-
80
-
81
- # **Code Llama**
82
- Code Llama is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 34 billion parameters. This is the repository for the 7B instruct-tuned version in the Hugging Face Transformers format. This model is designed for general code synthesis and understanding. Links to other models can be found in the index at the bottom.
83
-
84
- | | Base Model | Python | Instruct |
85
- | --- | ----------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------- |
86
- | 7B | [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) | [codellama/CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf) | [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) |
87
- | 13B | [codellama/CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf) | [codellama/CodeLlama-13b-Python-hf](https://huggingface.co/codellama/CodeLlama-13b-Python-hf) | [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) |
88
- | 34B | [codellama/CodeLlama-34b-hf](https://huggingface.co/codellama/CodeLlama-34b-hf) | [codellama/CodeLlama-34b-Python-hf](https://huggingface.co/codellama/CodeLlama-34b-Python-hf) | [codellama/CodeLlama-34b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf) |
89
-
90
- ## Model Use
91
-
92
- To use this model, please make sure to install transformers from `main` until the next version is released:
93
-
94
- ```bash
95
- pip install git+https://github.com/huggingface/transformers.git@main accelerate
96
- ```
97
-
98
- Model capabilities:
99
-
100
- - [x] Code completion.
101
- - [x] Infilling.
102
- - [x] Instructions / chat.
103
- - [ ] Python specialist.
104
-
105
-
106
- ## Model Details
107
- *Note: Use of this model is governed by the Meta license. Meta developed and publicly released the Code Llama family of large language models (LLMs).
108
-
109
- **Model Developers** Meta
110
-
111
- **Variations** Code Llama comes in three model sizes, and three variants:
112
-
113
- * Code Llama: base models designed for general code synthesis and understanding
114
- * Code Llama - Python: designed specifically for Python
115
- * Code Llama - Instruct: for instruction following and safer deployment
116
-
117
- All variants are available in sizes of 7B, 13B and 34B parameters.
118
-
119
- **This repository contains the Instruct version of the 7B parameters model.**
120
-
121
- **Input** Models input text only.
122
-
123
- **Output** Models generate text only.
124
-
125
- **Model Architecture** Code Llama is an auto-regressive language model that uses an optimized transformer architecture.
126
-
127
- **Model Dates** Code Llama and its variants have been trained between January 2023 and July 2023.
128
-
129
- **Status** This is a static model trained on an offline dataset. Future versions of Code Llama - Instruct will be released as we improve model safety with community feedback.
130
-
131
- **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
132
-
133
- **Research Paper** More information can be found in the paper "[Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)" or its [arXiv page](https://arxiv.org/abs/2308.12950).
134
-
135
- ## Intended Use
136
- **Intended Use Cases** Code Llama and its variants is intended for commercial and research use in English and relevant programming languages. The base model Code Llama can be adapted for a variety of code synthesis and understanding tasks, Code Llama - Python is designed specifically to handle the Python programming language, and Code Llama - Instruct is intended to be safer to use for code assistant and generation applications.
137
-
138
- **Out-of-Scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Code Llama and its variants.
139
-
140
- ## Hardware and Software
141
- **Training Factors** We used custom training libraries. The training and fine-tuning of the released models have been performed Meta’s Research Super Cluster.
142
-
143
- **Carbon Footprint** In aggregate, training all 9 Code Llama models required 400K GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 65.3 tCO2eq, 100% of which were offset by Meta’s sustainability program.
144
-
145
- ## Training Data
146
-
147
- All experiments reported here and the released models have been trained and fine-tuned using the same data as Llama 2 with different weights (see Section 2 and Table 1 in the [research paper](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) for details).
148
-
149
- ## Evaluation Results
150
-
151
- See evaluations for the main models and detailed ablations in Section 3 and safety evaluations in Section 4 of the research paper.
152
-
153
-
154
- ## Ethical Considerations and Limitations
155
-
156
- Code Llama and its variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Code Llama’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. Therefore, before deploying any applications of Code Llama, developers should perform safety testing and tuning tailored to their specific applications of the model.
157
-
158
- Please see the Responsible Use Guide available available at [https://ai.meta.com/llama/responsible-user-guide](https://ai.meta.com/llama/responsible-user-guide).
 
1
  ---
2
+ license: apache-2.0
 
 
3
  tags:
4
+ - function call
 
 
5
  ---
6
+ XAgentLLaMa is a collection of fine-tuned generative text models ranging in scale from 7 billion to 34 billion based on Llama 2 and Code Llama.
 
 
7
  This is the repository for the 7B fine-tuned model, optimized for XAgent with strong function call ability.
8
 
9
  ## Warning: This is a preview version of the model, does not stand for final quality.
 
68
  }
69
  }
70
  ```
71
+ If the json format of `global_arguments` is provided, the output will contains the `global_arguments` at any time.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
USE_POLICY.md DELETED
@@ -1,50 +0,0 @@
1
- # Llama Code Acceptable Use Policy
2
-
3
- Meta is committed to promoting safe and fair use of its tools and features, including Llama Code. If you access or use Llama Code, you agree to this Acceptable Use Policy (“Policy”). The most recent copy of this policy can be found at [ai.meta.com/llama/use-policy](http://ai.meta.com/llama/use-policy).
4
-
5
- ## Prohibited Uses
6
- We want everyone to use Llama Code safely and responsibly. You agree you will not use, or allow others to use, Llama Code to:
7
-
8
- 1. Violate the law or others’ rights, including to:
9
- 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
10
- 1. Violence or terrorism
11
- 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
12
- 3. Human trafficking, exploitation, and sexual violence
13
- 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
14
- 5. Sexual solicitation
15
- 6. Any other criminal activity
16
- 2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
17
- 3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
18
- 4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
19
- 5. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws
20
- 6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama 2 Materials
21
- 7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
22
-
23
-
24
-
25
- 2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama Code related to the following:
26
- 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State
27
- 2. Guns and illegal weapons (including weapon development)
28
- 3. Illegal drugs and regulated/controlled substances
29
- 4. Operation of critical infrastructure, transportation technologies, or heavy machinery
30
- 5. Self-harm or harm to others, including suicide, cutting, and eating disorders
31
- 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
32
-
33
-
34
-
35
- 3. Intentionally deceive or mislead others, including use of Llama Code related to the following:
36
- 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
37
- 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
38
- 3. Generating, promoting, or further distributing spam
39
- 4. Impersonating another individual without consent, authorization, or legal right
40
- 5. Representing that the use of Llama Code or outputs are human-generated
41
- 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement
42
- 4. Fail to appropriately disclose to end users any known dangers of your AI system
43
-
44
- Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means:
45
-
46
- * Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama)
47
- * Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)
48
- * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)
49
- * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama: [LlamaUseReport@meta.com](mailto:LlamaUseReport@meta.com)
50
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json DELETED
@@ -1,26 +0,0 @@
1
- {
2
- "_name_or_path": "codellama/CodeLlama-7b-Instruct-hf",
3
- "architectures": [
4
- "LlamaForCausalLM"
5
- ],
6
- "bos_token_id": 1,
7
- "eos_token_id": 2,
8
- "hidden_act": "silu",
9
- "hidden_size": 4096,
10
- "initializer_range": 0.02,
11
- "intermediate_size": 11008,
12
- "max_position_embeddings": 16384,
13
- "model_type": "llama",
14
- "num_attention_heads": 32,
15
- "num_hidden_layers": 32,
16
- "num_key_value_heads": 32,
17
- "pretraining_tp": 1,
18
- "rms_norm_eps": 1e-05,
19
- "rope_scaling": null,
20
- "rope_theta": 1000000,
21
- "tie_word_embeddings": false,
22
- "torch_dtype": "bfloat16",
23
- "transformers_version": "4.33.0.dev0",
24
- "use_cache": true,
25
- "vocab_size": 32016
26
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generation_config.json DELETED
@@ -1,6 +0,0 @@
1
- {
2
- "_from_model_config": true,
3
- "bos_token_id": 1,
4
- "eos_token_id": 2,
5
- "transformers_version": "4.33.0.dev0"
6
- }
 
 
 
 
 
 
 
model.safetensors.index.json DELETED
@@ -1,298 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 13477093376
4
- },
5
- "weight_map": {
6
- "lm_head.weight": "model-00002-of-00002.safetensors",
7
- "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
- "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
- "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
- "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
- "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
- "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
- "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
- "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
- "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
- "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
- "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
- "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
- "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
- "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
- "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
- "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
- "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
- "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
- "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
- "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
- "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
- "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
- "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
- "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
- "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
- "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
- "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
- "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
- "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
- "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
- "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
- "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
- "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
- "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
- "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
- "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
- "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
- "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
- "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
- "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
- "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
- "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
- "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
- "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
- "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
- "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
- "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
- "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
- "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
- "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
- "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
- "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
- "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
- "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
- "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
- "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
- "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
- "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
- "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
- "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
- "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
- "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
- "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
- "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
- "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
- "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
- "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
- "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
- "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
- "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
- "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
- "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
- "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
- "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
- "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
- "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
- "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
- "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
- "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
- "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
- "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
- "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
- "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
- "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
- "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
- "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
- "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
- "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
- "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
- "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
- "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
- "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
- "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
100
- "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
101
- "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
102
- "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
- "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
104
- "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
105
- "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
106
- "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
107
- "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
108
- "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
109
- "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
110
- "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
111
- "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
112
- "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
113
- "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
114
- "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
115
- "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
- "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
- "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
- "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
- "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
- "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
- "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
- "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
- "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
- "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
- "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
126
- "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
127
- "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
128
- "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
129
- "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
130
- "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
131
- "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
132
- "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
133
- "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
134
- "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
135
- "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
136
- "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
137
- "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
138
- "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
139
- "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
140
- "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
141
- "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
142
- "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
143
- "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
144
- "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
145
- "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
146
- "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
147
- "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
148
- "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
149
- "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
150
- "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
151
- "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
- "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
- "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
- "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
- "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
- "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
- "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
- "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
- "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
160
- "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
161
- "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
- "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
- "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
- "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
- "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
- "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
167
- "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
168
- "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
169
- "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
170
- "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
171
- "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
172
- "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
173
- "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
174
- "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
175
- "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
176
- "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
177
- "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
178
- "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
179
- "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
180
- "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
181
- "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
182
- "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
183
- "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
184
- "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
185
- "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
186
- "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
187
- "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
188
- "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
- "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
- "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
- "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
- "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
- "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
- "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
- "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
196
- "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
197
- "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
198
- "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
199
- "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
200
- "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
201
- "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
202
- "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
203
- "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
204
- "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
205
- "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
206
- "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
207
- "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
208
- "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
209
- "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
210
- "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
211
- "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
212
- "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
213
- "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
214
- "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
215
- "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
- "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
- "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
- "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
- "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
- "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
- "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
- "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
- "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
- "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
225
- "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
226
- "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
227
- "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
228
- "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
229
- "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
- "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
- "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
232
- "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
233
- "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
234
- "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
235
- "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
236
- "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
237
- "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
238
- "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
239
- "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
240
- "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
241
- "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
242
- "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
- "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
244
- "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
245
- "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
246
- "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
247
- "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
248
- "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
249
- "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
250
- "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
251
- "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
252
- "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
253
- "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
254
- "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
255
- "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
256
- "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
- "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
- "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
- "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
- "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
261
- "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
262
- "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
263
- "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
264
- "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
265
- "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
- "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
- "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
268
- "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
269
- "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
270
- "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
271
- "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
272
- "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
273
- "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
274
- "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
275
- "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
276
- "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
277
- "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
278
- "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
279
- "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
280
- "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
281
- "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
282
- "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
283
- "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
284
- "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
285
- "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
286
- "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
287
- "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
288
- "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
289
- "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
290
- "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
291
- "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
292
- "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
293
- "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
294
- "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
295
- "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
- "model.norm.weight": "model-00002-of-00002.safetensors"
297
- }
298
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:35156efc857162a2c59f5a120f28df4162c35a09cb82b7f4a51f692c8c0f0fba
3
- size 13477189697
 
 
 
 
special_tokens_map.json DELETED
@@ -1,23 +0,0 @@
1
- {
2
- "bos_token": {
3
- "content": "<s>",
4
- "lstrip": false,
5
- "normalized": true,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "eos_token": {
10
- "content": "</s>",
11
- "lstrip": false,
12
- "normalized": true,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "unk_token": {
17
- "content": "<unk>",
18
- "lstrip": false,
19
- "normalized": true,
20
- "rstrip": false,
21
- "single_word": false
22
- }
23
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
tokenizer.model DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:45ccb9c8b6b561889acea59191d66986d314e7cbd6a78abc6e49b139ca91c1e6
3
- size 500058
 
 
 
 
tokenizer_config.json DELETED
@@ -1,34 +0,0 @@
1
- {
2
- "add_bos_token": true,
3
- "add_eos_token": false,
4
- "bos_token": {
5
- "__type": "AddedToken",
6
- "content": "<s>",
7
- "lstrip": false,
8
- "normalized": true,
9
- "rstrip": false,
10
- "single_word": false
11
- },
12
- "clean_up_tokenization_spaces": false,
13
- "eos_token": {
14
- "__type": "AddedToken",
15
- "content": "</s>",
16
- "lstrip": false,
17
- "normalized": true,
18
- "rstrip": false,
19
- "single_word": false
20
- },
21
- "legacy": null,
22
- "model_max_length": 1000000000000000019884624838656,
23
- "pad_token": null,
24
- "sp_model_kwargs": {},
25
- "tokenizer_class": "CodeLlamaTokenizer",
26
- "unk_token": {
27
- "__type": "AddedToken",
28
- "content": "<unk>",
29
- "lstrip": false,
30
- "normalized": true,
31
- "rstrip": false,
32
- "single_word": false
33
- }
34
- }