Xenopilus's picture
End of training
3f6e33a verified
---
license: apache-2.0
base_model: google/electra-base-discriminator
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: electra-base-multiple-choice-v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-base-multiple-choice-v1
This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2889
- Accuracy: 0.8975
- Precision: 0.9011
- Recall: 0.8931
- F1: 0.8971
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log | 1.0 | 269 | 0.2970 | 0.8804 | 0.8830 | 0.8769 | 0.8799 |
| 0.3559 | 2.0 | 538 | 0.2695 | 0.8932 | 0.8965 | 0.8891 | 0.8928 |
| 0.3559 | 3.0 | 807 | 0.2889 | 0.8975 | 0.9011 | 0.8931 | 0.8971 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0