Edit model card

https://huggingface.co/apple/mobilevit-xx-small with ONNX weights to be compatible with Transformers.js.

Usage (Transformers.js)

If you haven't already, you can install the Transformers.js JavaScript library from NPM using:

npm i @xenova/transformers

Example: Perform image classification with Xenova/mobilevit-xx-small

import { pipeline } from '@xenova/transformers';

// Create an image classification pipeline
const classifier = await pipeline('image-classification', 'Xenova/mobilevit-xx-small', {
    quantized: false,
});

// Classify an image
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
const output = await classifier(url);
console.log(output);
// [{ label: 'tiger, Panthera tigris', score: 0.7113513350486755 }]

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using 🤗 Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx).

Downloads last month
33
Inference Examples
Inference API (serverless) does not yet support transformers.js models for this pipeline type.

Model tree for Xenova/mobilevit-xx-small

Quantized
(2)
this model