|
--- |
|
base_model: microsoft/speecht5_tts |
|
library_name: transformers.js |
|
pipeline_tag: text-to-speech |
|
--- |
|
|
|
https://huggingface.co/microsoft/speecht5_tts with ONNX weights to be compatible with Transformers.js. |
|
|
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @xenova/transformers |
|
``` |
|
|
|
**Example:** Text-to-speech pipeline. |
|
```js |
|
import { pipeline } from '@xenova/transformers'; |
|
|
|
// Create a text-to-speech pipeline |
|
const synthesizer = await pipeline('text-to-speech', 'Xenova/speecht5_tts', { quantized: false }); |
|
|
|
// Generate speech |
|
const speaker_embeddings = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/speaker_embeddings.bin'; |
|
const result = await synthesizer('Hello, my dog is cute', { speaker_embeddings }); |
|
console.log(result); |
|
// { |
|
// audio: Float32Array(26112) [-0.00005657337896991521, 0.00020583874720614403, ...], |
|
// sampling_rate: 16000 |
|
// } |
|
``` |
|
|
|
Optionally, save the audio to a wav file (Node.js): |
|
```js |
|
import wavefile from 'wavefile'; |
|
import fs from 'fs'; |
|
|
|
const wav = new wavefile.WaveFile(); |
|
wav.fromScratch(1, result.sampling_rate, '32f', result.audio); |
|
fs.writeFileSync('result.wav', wav.toBuffer()); |
|
``` |
|
|
|
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/on1ij9Y269ne9zlYN9mdb.wav"></audio> |
|
|
|
**Example:** Load processor, tokenizer, and models separately. |
|
```js |
|
import { AutoTokenizer, AutoProcessor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, Tensor } from '@xenova/transformers'; |
|
|
|
// Load the tokenizer and processor |
|
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/speecht5_tts'); |
|
const processor = await AutoProcessor.from_pretrained('Xenova/speecht5_tts'); |
|
|
|
// Load the models |
|
// NOTE: We use the unquantized versions as they are more accurate |
|
const model = await SpeechT5ForTextToSpeech.from_pretrained('Xenova/speecht5_tts', { quantized: false }); |
|
const vocoder = await SpeechT5HifiGan.from_pretrained('Xenova/speecht5_hifigan', { quantized: false }); |
|
|
|
// Load speaker embeddings from URL |
|
const speaker_embeddings_data = new Float32Array( |
|
await (await fetch('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/speaker_embeddings.bin')).arrayBuffer() |
|
); |
|
const speaker_embeddings = new Tensor( |
|
'float32', |
|
speaker_embeddings_data, |
|
[1, speaker_embeddings_data.length] |
|
) |
|
|
|
// Run tokenization |
|
const { input_ids } = tokenizer('Hello, my dog is cute'); |
|
|
|
// Generate waveform |
|
const { waveform } = await model.generate_speech(input_ids, speaker_embeddings, { vocoder }); |
|
console.log(waveform) |
|
// Tensor { |
|
// dims: [ 26112 ], |
|
// type: 'float32', |
|
// size: 26112, |
|
// data: Float32Array(26112) [ -0.00043630177970044315, -0.00018082228780258447, ... ], |
|
// } |
|
``` |
|
|
|
Optionally, save the audio to a wav file (Node.js): |
|
```js |
|
// Write to file (Node.js) |
|
import wavefile from 'wavefile'; |
|
import fs from 'fs'; |
|
|
|
const wav = new wavefile.WaveFile(); |
|
wav.fromScratch(1, processor.feature_extractor.config.sampling_rate, '32f', waveform.data); |
|
fs.writeFileSync('out.wav', wav.toBuffer()); |
|
``` |
|
|
|
|
|
--- |
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |