metadata
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- gemma
- trl
base_model: unsloth/gemma-7b-bnb-4bit
Uploaded model
- Developed by: Xhaheen
- License: apache-2.0
- Finetuned from model : unsloth/gemma-7b-bnb-4bit
This gemma model was trained 2x faster with Unsloth and Huggingface's TRL library.
Inference With Unsloth on colab
import torch
major_version, minor_version = torch.cuda.get_device_capability()
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
if major_version >= 8:
# Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40)
!pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes
else:
# Use this for older GPUs (V100, Tesla T4, RTX 20xx)
!pip install --no-deps xformers trl peft accelerate bitsandbytes
pass
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = False
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "Xhaheen/Gemma_Urdu_Shaheen_1_epoch",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
device_map="auto"
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
input_prompt = """
### Instruction:
{}
### Input:
{}
### Response:
{}"""
input_text = input_prompt.format(
"دیئے گئے موضوع کے بارے میں ایک مختصر پیراگراف لکھیں۔", # instruction
"قابل تجدید توانائی کے استعمال کی اہمیت", # input
"", # output - leave this blank for generation!
)
inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
response = tokenizer.batch_decode(outputs)
Inference With Inference with HuggingFace transformers
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
model = AutoPeftModelForCausalLM.from_pretrained(
"Xhaheen/Gemma_Urdu_Shaheen_1_epoch",
load_in_4bit = False
)
tokenizer = AutoTokenizer.from_pretrained("Xhaheen/Gemma_Urdu_Shaheen_1_epoch")
input_prompt = """
### Instruction:
{}
### Input:
{}
### Response:
{}"""
input_text = input_prompt.format(
"دیئے گئے موضوع کے بارے میں ایک مختصر پیراگراف لکھیں۔", # instruction
"قابل تجدید توانائی کے استعمال کی اہمیت", # input
"", # output - leave this blank for generation!
)
inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
response = tokenizer.batch_decode(outputs)[0]