File size: 17,370 Bytes
9a066f3
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3b88cb8430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3b88ca6800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699050748656966146, "learning_rate": 0.002, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAAboxFwBbPsD/hziDAI9LmPysUF8CYy+K+ipsiQAAmob9CZJ4/eOXxvxNsYj8N+yY/0uWKPgVa9btbEM4+Ix/qPjImGcDpwnQ/E4dUP89oxz6aS4Q+7uumvqNT076mgaY+6fUEQCokC8BPKY4/M6oAQCbALMCm+jNAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAc0Clv/ceHz9VlXK/2sEqP8M6vL+CVpK/Xw3BPybhZb47mpm+pM3EvgxF5T4Avcg/csWPP58uNT/jy6w/CmiUPlj8w78+NVy+oSScPyUfRj+mMsK/YAeiv3z0Wr+qMJE/QDXKP2TQpr/FycK+KNmrP0ACz79sqBs/lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAABujEXAFs+wP+HOIMBfZ4e/CWvGP7ksIb8j0uY/KxQXwJjL4r4tHE4/jnFlv9D2qj+KmyJAACahv0Jknj8u0fE+aw81Ppa0Er945fG/E2xiPw37Jj/82nw/qSuev+0eWz7S5Yo+BVr1u1sQzj6xfLY+IPBBu/ZYrz4jH+o+MiYZwOnCdD8/OhK+52I3v5H36T8Th1Q/z2jHPppLhD5agqk/Nf/MP44Inb/u66a+o1PTvqaBpj6k3Ea/fufNv/HOWz/p9QRAKiQLwE8pjj+VK8M+QtLRP8Y/UL4zqgBAJsAswKb6M0CN98c+sCU9vytiir+UaA5LCksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-3.0866961   1.3813198  -2.512627  ]\n [ 1.8032879  -2.360606   -0.44295955]\n [ 2.5407434  -1.2589722   1.2374346 ]\n [-1.8898153   0.8844616   0.65226823]\n [ 0.27128464 -0.00748754  0.40246853]\n [ 0.4572688  -2.3929563   0.9560991 ]\n [ 0.83018607  0.3894715   0.2583893 ]\n [-0.32601875 -0.41274747  0.3252079 ]\n [ 2.0775092  -2.1740823   1.1106356 ]\n [ 2.0103881  -2.6992278   2.8121734 ]]", "desired_goal": "[[-1.2910293   0.62156624 -0.9475911 ]\n [ 0.66702044 -1.4705433  -1.143265  ]\n [ 1.5082206  -0.22449169 -0.3000048 ]\n [-0.3843814   0.4477924   1.5682678 ]\n [ 1.123213    0.70774263  1.3499721 ]\n [ 0.28985626 -1.5311384  -0.21504685]\n [ 1.2198678   0.7739127  -1.5171707 ]\n [-1.2658501  -0.85529304  1.1342976 ]\n [ 1.5797501  -1.3032346  -0.38044563]\n [ 1.3425646  -1.6172562   0.60803866]]", "observation": "[[-3.0866961e+00  1.3813198e+00 -2.5126269e+00 -1.0578421e+00\n   1.5501415e+00 -6.2958866e-01]\n [ 1.8032879e+00 -2.3606060e+00 -4.4295955e-01  8.0511743e-01\n  -8.9626396e-01  1.3356571e+00]\n [ 2.5407434e+00 -1.2589722e+00  1.2374346e+00  4.7229904e-01\n   1.7681663e-01 -5.7306802e-01]\n [-1.8898153e+00  8.8446158e-01  6.5226823e-01  9.8771644e-01\n  -1.2357074e+00  2.1398516e-01]\n [ 2.7128464e-01 -7.4875378e-03  4.0246853e-01  3.5642007e-01\n  -2.9592589e-03  3.4247559e-01]\n [ 4.5726880e-01 -2.3929563e+00  9.5609909e-01 -1.4280032e-01\n  -7.1635288e-01  1.8278676e+00]\n [ 8.3018607e-01  3.8947150e-01  2.5838929e-01  1.3242905e+00\n   1.6015383e+00 -1.2268236e+00]\n [-3.2601875e-01 -4.1274747e-01  3.2520789e-01 -7.7680421e-01\n  -1.6086271e+00  8.5862643e-01]\n [ 2.0775092e+00 -2.1740823e+00  1.1106356e+00  3.8119188e-01\n   1.6392291e+00 -2.0336828e-01]\n [ 2.0103881e+00 -2.6992278e+00  2.8121734e+00  3.9056054e-01\n  -7.3885632e-01 -1.0811208e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAAAAAABAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAmm6sPYgh1LxJNY49rA8UvqtqOTyDc8s95+/qPSSN7TxMngM8wjANviZMgz3Va1A+fk4MPu+5Ar4I9Q4+TgAMvZSssb1l8rI9i6sJPXUfFL7z8IY+qrU3PLWBtT1BZFk+nOyAPWGqf73UoRs+tAMOvte8Xj1qFeU9lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.08419533 -0.0258949   0.06943757]\n [-0.14459103  0.01131694  0.09934141]\n [ 0.11471539  0.02899797  0.00803335]\n [-0.13788131  0.06411009  0.20353635]\n [ 0.13701817 -0.1276624   0.1396066 ]\n [-0.03417998 -0.08675495  0.08737639]\n [ 0.03361086 -0.14465125  0.26355705]\n [ 0.01121275  0.0886263   0.2122965 ]\n [ 0.0629513  -0.06241835  0.15198451]\n [-0.138686    0.05437931  0.11185725]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9j5zo2XLNiMAWyUSwSMAXSUR0C1MZDySV4YdX2UKGgGR7/exoqTbFjvaAdLBGgIR0C1MV+/5+H8dX2UKGgGR7/M7o0Q9RrKaAdLA2gIR0C1MXK+evpydX2UKGgGR7/hZ+6RQrMDaAdLBWgIR0C1Ma8VtXPrdX2UKGgGR8AcNNJvo/zKaAdLMmgIR0C1MRxo24usdX2UKGgGR7/YoZydWhh6aAdLBGgIR0C1MYnFYMfBdX2UKGgGR7/ROrhisny/aAdLA2gIR0C1McK42CNCdX2UKGgGR8AYKE7GNrCWaAdLMmgIR0C1MJ46S1VpdX2UKGgGR7+2vs7dSEUTaAdLAmgIR0C1MZcTN+spdX2UKGgGR8AcbBuXNTtLaAdLMmgIR0C1Mj1fzBhydX2UKGgGR7/O4mTkhib2aAdLA2gIR0C1MLKn752ydX2UKGgGR8Addjz7MxGlaAdLMmgIR0C1Mnu7pV0cdX2UKGgGR7/K+4b0e2d/aAdLA2gIR0C1MauVLSNPdX2UKGgGR7+9QrMC9ytFaAdLAmgIR0C1MkyMcZLqdX2UKGgGR7/THM2WIGhVaAdLBGgIR0C1MMt4Z/CqdX2UKGgGR7/YySmqHXVcaAdLBGgIR0C1MpPTCtRvdX2UKGgGR7/MGXXyy2QXaAdLA2gIR0C1Mq/dIoVmdX2UKGgGR8Ac4wSJ0nw5aAdLMmgIR0C1MbpTuOS4dX2UKGgGR7+9CdBjWkJsaAdLAmgIR0C1MsMz/IbPdX2UKGgGR8AVp9y925hCaAdLMmgIR0C1MWQSnLq2dX2UKGgGR7/nBnjABT4taAdLCmgIR0C1MqL2tdRjdX2UKGgGR7/Cz41xbSqmaAdLAmgIR0C1MXlFlTWHdX2UKGgGR7/LlWfbsWweaAdLA2gIR0C1Mr/PLPlddX2UKGgGR7/ciQDFId2gaAdLBmgIR0C1Mfarq+rVdX2UKGgGR7/aakRBeHBUaAdLBGgIR0C1MZ5n13+udX2UKGgGR7+/eBQN0/4ZaAdLAmgIR0C1MtQWN3nqdX2UKGgGR7/UQlKK508vaAdLA2gIR0C1Mu+/k/8mdX2UKGgGR7/VTspobn5jaAdLBGgIR0C1McYoy9EkdX2UKGgGR7+6CrcTJyQxaAdLAmgIR0C1Md3lGPPtdX2UKGgGR7/Nw9aEBbOeaAdLA2gIR0C1MxEFr2xqdX2UKGgGR7/ID2alUIcBaAdLBGgIR0C1MzgyyleodX2UKGgGR7/W8J2MbWEsaAdLBWgIR0C1Mg8xCY1HdX2UKGgGR7/e8LronrpraAdLBWgIR0C1M2hYq5LAdX2UKGgGR7/b12q1gH/taAdLBmgIR0C1MkfwuuifdX2UKGgGR8AVeGvfTCtSaAdLMmgIR0C1MhjVtoBadX2UKGgGR7+1eC04R28qaAdLAmgIR0C1MltMK1G9dX2UKGgGR7/PGnXNC7btaAdLA2gIR0C1Mni0WuYAdX2UKGgGR8AXQ6cRUWEcaAdLMmgIR0C1M3iup0fYdX2UKGgGR7/EsYl6Z6UraAdLAmgIR0C1MosrEtNBdX2UKGgGR8AK1zuF6AvtaAdLJWgIR0C1MjUDhcZ+dX2UKGgGR7/IdqcmShalaAdLA2gIR0C1MqhXfZVXdX2UKGgGR8AVBvfj0cwQaAdLMmgIR0C1MuLzGxUvdX2UKGgGR7+o6XBxgiNbaAdLAWgIR0C1MrKQA+6idX2UKGgGR8AfSjwhGH58aAdLMmgIR0C1M5GN70FsdX2UKGgGR7+74xk/bCaaaAdLAmgIR0C1M6R/qgRLdX2UKGgGR7/SsIE8q4H5aAdLBWgIR0C1MxPfXPJJdX2UKGgGR7/ZC6Ymb9ZSaAdLBWgIR0C1MuONxVABdX2UKGgGR7+gw482aUiZaAdLAWgIR0C1Mx7r1M/RdX2UKGgGR8AV4vFm4AjqaAdLMmgIR0C1M4hk/bCadX2UKGgGR7+1AJLM9r44aAdLAmgIR0C1Mve09hZydX2UKGgGR7/BdvbXYlIFaAdLAmgIR0C1MzOG47RwdX2UKGgGR8AZ242CNCJGaAdLMmgIR0C1NKtrO7g9dX2UKGgGR7/vdehPCVKPaAdLC2gIR0C1M2Ed7v5QdX2UKGgGR8ASz+98JD3NaAdLMmgIR0C1M9zklu3udX2UKGgGR7/hzz/ZM+NcaAdLB2gIR0C1NPF3hXKbdX2UKGgGR7+o5cTrVvuPaAdLAWgIR0C1NPsry1/ldX2UKGgGR7/T1+AmReTnaAdLA2gIR0C1M/wl4TsZdX2UKGgGR7/NtKIznA6/aAdLA2gIR0C1NRipWFN+dX2UKGgGR7/MxmCiAUcoaAdLA2gIR0C1NBnyup0fdX2UKGgGR7+5Wo3rD63zaAdLAmgIR0C1NC8VLzwudX2UKGgGR7+dPDYRNATqaAdLAWgIR0C1NDk/bCaadX2UKGgGR7/YtTkyULUkaAdLBGgIR0C1NUEo8ZDRdX2UKGgGR7/Lb1yvLX+VaAdLA2gIR0C1NFdDhLoPdX2UKGgGR7/J3lCCz1K5aAdLA2gIR0C1NWIlpoK2dX2UKGgGR8AMTQJHAh0RaAdLJ2gIR0C1NPpaJQ+EdX2UKGgGR7/NlcyFfzBiaAdLA2gIR0C1NHiKrJbMdX2UKGgGR8AWxyZKFqSHaAdLMmgIR0C1NVgvQF9sdX2UKGgGR7/Zg8r7O3UhaAdLBGgIR0C1NSUxASnMdX2UKGgGR7/SFBppN9H+aAdLA2gIR0C1NJjiKiwjdX2UKGgGR8AVo7A+IMz/aAdLMmgIR0C1NAmWpqASdX2UKGgGR7/BbnoxHoX9aAdLAmgIR0C1NW1klNUPdX2UKGgGR7/X1fE4vN/waAdLBGgIR0C1NMWSZBszdX2UKGgGR7/eujASFoL5aAdLBmgIR0C1NWYhdMTOdX2UKGgGR7+60ngHeJpGaAdLAmgIR0C1NNtYnv2HdX2UKGgGR7/gJ2ECeVcEaAdLBmgIR0C1NEwM6RyPdX2UKGgGR7+XeBQN0/4ZaAdLAWgIR0C1NFaiwjdIdX2UKGgGR7+8siB5HEuQaAdLAmgIR0C1NPGFi8WcdX2UKGgGR8AWo0fozN2UaAdLMmgIR0C1NDD8UEgXdX2UKGgGR7/UJq7Ackt3aAdLBWgIR0C1NZ3fMwDedX2UKGgGR7/VblA/s3Q2aAdLBGgIR0C1NIK46Oo6dX2UKGgGR7/WhJAdGRV7aAdLBGgIR0C1NR0UfxMGdX2UKGgGR7/FDGcWj45+aAdLAmgIR0C1NJaUeMhpdX2UKGgGR7/FCfpUxVQzaAdLA2gIR0C1NT4qG1x9dX2UKGgGR8AVIlByCFsYaAdLMmgIR0C1Narvb48EdX2UKGgGR8AQhLpRoAXEaAdLMGgIR0C1NSN96TnrdX2UKGgGR8AbDOHFglWwaAdLMmgIR0C1NY4GdI5HdX2UKGgGR7/UgbIcR15jaAdLBGgIR0C1NWpZOi35dX2UKGgGR7/n0d7v5P/JaAdLC2gIR0C1NKnsolUqdX2UKGgGR7/TCHRCx/utaAdLBGgIR0C1NU7fDUExdX2UKGgGR7/du76Hj6vaaAdLBmgIR0C1NcODFqBVdX2UKGgGR7/WiBXjlxOtaAdLBGgIR0C1NWgAuIykdX2UKGgGR7/SKa5PM0P6aAdLA2gIR0C1NdQ84giedX2UKGgGR7+3FqBVdX1baAdLAmgIR0C1NXMwUQCkdX2UKGgGR8AamDVYp2ECaAdLMmgIR0C1NU+UY8+zdX2UKGgGR7/QEQoTfzjFaAdLA2gIR0C1NedxuKoAdX2UKGgGR7/JdE9dNWU9aAdLA2gIR0C1NYaFh5PedX2UKGgGR7+l/MGHHmzTaAdLAWgIR0C1Ne2VRk3CdX2UKGgGR7/FuPV/c32maAdLAmgIR0C1NZJcLSeAdX2UKGgGR7/QeP7vXsgMaAdLA2gIR0C1NWGrwOOKdX2UKGgGR7+/Uz9CNS62aAdLAmgIR0C1NfkFjd56dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40000, "n_steps": 5, "gamma": 0.97, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 10, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9gYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}