Ankit Kumar commited on
Commit
9a066f3
·
1 Parent(s): 101ec3e

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v3
17
  metrics:
18
  - type: mean_reward
19
- value: -0.25 +/- 0.13
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v3
17
  metrics:
18
  - type: mean_reward
19
+ value: -0.19 +/- 0.13
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v3.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cddad5c07a33737de2a46cf30389bc0e36d6e99b066b022ddd9db3e47769146c
3
- size 108132
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0232bce590771bb8e86c8cdc838e894559c8e511817bc69a5c48598804902504
3
+ size 111169
a2c-PandaReachDense-v3/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d6930140430>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7d6930138f80>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -19,31 +19,31 @@
19
  "weight_decay": 0
20
  }
21
  },
22
- "num_timesteps": 3000000,
23
- "_total_timesteps": 3000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
- "start_time": 1698238361337270811,
28
- "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "_last_obs": {
31
  ":type:": "<class 'collections.OrderedDict'>",
32
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhqqDPmLqRrwIbeM+hqqDPmLqRrwIbeM+hqqDPmLqRrwIbeM+hqqDPmLqRrwIbeM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAO4DLP+TThr+7IsE/e0itv3Zp3T5Sh+Y+I1+6Pyv3Ij+tQp2/+y2kPyFMub4sfp89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACGqoM+YupGvAht4z6FdgA/TfV6u6qFxz6GqoM+YupGvAht4z6FdgA/TfV6u6qFxz6GqoM+YupGvAht4z6FdgA/TfV6u6qFxz6GqoM+YupGvAht4z6FdgA/TfV6u6qFxz6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
- "achieved_goal": "[[ 0.25716037 -0.01214084 0.44419122]\n [ 0.25716037 -0.01214084 0.44419122]\n [ 0.25716037 -0.01214084 0.44419122]\n [ 0.25716037 -0.01214084 0.44419122]]",
34
- "desired_goal": "[[ 1.5898508 -1.0533414 1.5088724 ]\n [-1.3537744 0.43244523 0.45025116]\n [ 1.4560283 0.636584 -1.2285973 ]\n [ 1.2826532 -0.36190894 0.07787737]]",
35
- "observation": "[[ 0.25716037 -0.01214084 0.44419122 0.50180846 -0.00382932 0.38969165]\n [ 0.25716037 -0.01214084 0.44419122 0.50180846 -0.00382932 0.38969165]\n [ 0.25716037 -0.01214084 0.44419122 0.50180846 -0.00382932 0.38969165]\n [ 0.25716037 -0.01214084 0.44419122 0.50180846 -0.00382932 0.38969165]]"
36
  },
37
  "_last_episode_starts": {
38
  ":type:": "<class 'numpy.ndarray'>",
39
- ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
  },
41
  "_last_original_obs": {
42
  ":type:": "<class 'collections.OrderedDict'>",
43
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACRHmvR/ASTyxCWU+7/fvvbcwxDxhjew8pYsyPQr/d7v4RlY+vZwCvmvfD75VCBk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
- "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
- "desired_goal": "[[-0.11233718 0.01231387 0.22366978]\n [-0.11717211 0.02394901 0.02887601]\n [ 0.04359021 -0.00378412 0.2092551 ]\n [-0.12755103 -0.14050071 0.14944585]]",
46
- "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
  },
48
  "_episode_num": 0,
49
  "use_sde": false,
@@ -52,15 +52,15 @@
52
  "_stats_window_size": 100,
53
  "ep_info_buffer": {
54
  ":type:": "<class 'collections.deque'>",
55
- ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7rR4QjD8+CMAWyUSwKMAXSUR0C+Ml6SxJNCdX2UKGgGR7/BGOMl1KXfaAdLAmgIR0C+MdDIzWPMdX2UKGgGR7/HhWo3rD64aAdLA2gIR0C+MphEWqLkdX2UKGgGR7/TcawUxmCiaAdLA2gIR0C+Mh4znA6/dX2UKGgGR798kdFOO802aAdLAWgIR0C+MpqRuCPIdX2UKGgGR7/MiwjdHlOoaAdLA2gIR0C+MmaaG5+ZdX2UKGgGR7+GoFV1fVqfaAdLAWgIR0C+Mp0voNd7dX2UKGgGR7/W6N2ki2UjaAdLA2gIR0C+Mdk0aZQYdX2UKGgGR7+ZLRKHwgDBaAdLAWgIR0C+Mds8DB/JdX2UKGgGR7/K+7Dl5nlGaAdLA2gIR0C+Mm1khA4XdX2UKGgGR7/Onx8UmD15aAdLBGgIR0C+MidR77bddX2UKGgGR7+fZmI0qH45aAdLAWgIR0C+MiqXKKYRdX2UKGgGR7/bTOgQHzH0aAdLBGgIR0C+MqbdWQwLdX2UKGgGR7/Kxkd3jdYXaAdLA2gIR0C+MeK3NLUTdX2UKGgGR7+/CWNWEK3NaAdLAmgIR0C+Mi7kKeCkdX2UKGgGR7/QnqFAVwglaAdLBGgIR0C+MndJ8OTadX2UKGgGR7/Ry5I6Kcd6aAdLA2gIR0C+Mq13IMjNdX2UKGgGR7/Pbs4T9KmLaAdLA2gIR0C+MeliKBNFdX2UKGgGR7/AlabF0gbIaAdLA2gIR0C+MjZ88cMmdX2UKGgGR7+ou5BkZrHmaAdLAWgIR0C+Meye7L+xdX2UKGgGR7/K5xzaK1ohaAdLA2gIR0C+Mn7fk3judX2UKGgGR7/S5oGpuMuOaAdLA2gIR0C+MrUiUxEfdX2UKGgGR7/DpM6BAfMfaAdLAmgIR0C+MoMIiTt+dX2UKGgGR7/ADoQnQY1paAdLAmgIR0C+MrlLeyiVdX2UKGgGR7/fyIYWLxZuaAdLBGgIR0C+Mj8tXgccdX2UKGgGR7/Y2nKnvUjLaAdLBGgIR0C+MfWIoE0SdX2UKGgGR7+lI5HVf/m1aAdLAWgIR0C+Mr0Aksz3dX2UKGgGR7+0kdFOO802aAdLAmgIR0C+MokJWvKVdX2UKGgGR7+oqslsxfv4aAdLAWgIR0C+MfkD6nBMdX2UKGgGR7/FEtuk1uR+aAdLA2gIR0C+Mkce4kNXdX2UKGgGR7+0iA2AG0NSaAdLAmgIR0C+Mf1GPPszdX2UKGgGR7/Jvegte2NOaAdLA2gIR0C+MsOK0lZ6dX2UKGgGR7/WmP5pJwsHaAdLBGgIR0C+MpGs/6frdX2UKGgGR7+7uogmqo60aAdLAmgIR0C+MskHpr1vdX2UKGgGR7/RdJJ5E+gUaAdLA2gIR0C+Mk8Oby6MdX2UKGgGR7/Sm9g4OtnxaAdLA2gIR0C+MgVBhQWOdX2UKGgGR7+y5SWJJoTPaAdLAmgIR0C+MlNI5HVgdX2UKGgGR7/YKKYRdyDJaAdLBGgIR0C+Mpu1OTJRdX2UKGgGR7/Stb9qDbrUaAdLA2gIR0C+MgvLxI8RdX2UKGgGR7/Zc/MW43FUaAdLBGgIR0C+MtI9C/oJdX2UKGgGR7+6inHeaa1DaAdLAmgIR0C+MtekUKzBdX2UKGgGR7/R+LWI42jxaAdLA2gIR0C+MqO4smOVdX2UKGgGR7/YG1QZXMhYaAdLBGgIR0C+Ml27z06HdX2UKGgGR7/UiWVu76HkaAdLA2gIR0C+MhPoNd7fdX2UKGgGR7/HIxQBPsRhaAdLA2gIR0C+Mt5Aprk9dX2UKGgGR7/R3XI2fkFOaAdLA2gIR0C+MqpLmITHdX2UKGgGR7/PSNOuaF23aAdLA2gIR0C+MmQ9/z8QdX2UKGgGR7/NHFPznRsuaAdLA2gIR0C+Mhp0jkdWdX2UKGgGR7+SIHkcS5AhaAdLAWgIR0C+MuH6InBtdX2UKGgGR7+7yWiUPhAGaAdLAmgIR0C+Mh/1xsEadX2UKGgGR7/K8PnSv1UVaAdLA2gIR0C+MrJd0JWvdX2UKGgGR7/SXYlIEr5JaAdLA2gIR0C+MmxubZvldX2UKGgGR7/V48EFGG21aAdLA2gIR0C+MujA8B+4dX2UKGgGR7/BwTdtVJcxaAdLAmgIR0C+MnCQPqcFdX2UKGgGR7/LNBWxQizLaAdLA2gIR0C+MiazmfXgdX2UKGgGR7/JGuLaVUuMaAdLA2gIR0C+MroKIBRydX2UKGgGR7/MHcDbJwKjaAdLA2gIR0C+MvAo9cKPdX2UKGgGR7/MnCwbEP1+aAdLA2gIR0C+Mi4BikO7dX2UKGgGR7/K1QZXMhX9aAdLA2gIR0C+MsA6IWP+dX2UKGgGR7/atXxOLzf8aAdLBGgIR0C+MnophF3IdX2UKGgGR7/AMUh3aBZqaAdLAmgIR0C+MjJjYqXodX2UKGgGR7+zqzJIUahpaAdLAmgIR0C+Mn+anaWYdX2UKGgGR7/E09hZyMkyaAdLA2gIR0C+MsfjOs1bdX2UKGgGR7/Agntv4ubraAdLAmgIR0C+MoSFj/dZdX2UKGgGR7/Rkhib2Dg7aAdLA2gIR0C+MjsAaNuMdX2UKGgGR7/D1e0G/vfCaAdLAmgIR0C+Ms4f4h2XdX2UKGgGR7/I+pwS8J2MaAdLA2gIR0C+Mo2hVU++dX2UKGgGR7/TW7e2uxKQaAdLA2gIR0C+MkPReC04dX2UKGgGR7/ULFXJYDDCaAdLA2gIR0C+MtYInjQzdX2UKGgGR7+7gbZOBUaRaAdLAmgIR0C+MpIacZtOdX2UKGgGR7/0IzFdcB2faAdLDmgIR0C+MxPd69kCdX2UKGgGR7/dbd8Aq/dqaAdLBGgIR0C+Mt/w3HaOdX2UKGgGR7/RyhzvJA+qaAdLA2gIR0C+Mpng9/z8dX2UKGgGR7+2uyNXHR1HaAdLAmgIR0C+Mxgk5ZKWdX2UKGgGR7/hemelKsdUaAdLB2gIR0C+MlQ/HHWCdX2UKGgGR7/RHc1wYLssaAdLA2gIR0C+MuZylvZRdX2UKGgGR7/SIkqtozvaaAdLA2gIR0C+MqBXGOuJdX2UKGgGR7/Q/+85CF9KaAdLA2gIR0C+Mx/epGWldX2UKGgGR7/GFuejEehgaAdLA2gIR0C+Mlv1tfoidX2UKGgGR7/QgXuVopQUaAdLA2gIR0C+Mu4s7MgVdX2UKGgGR7/Ha/yoXKr8aAdLA2gIR0C+Mqg22oegdX2UKGgGR7+8feUILPUsaAdLAmgIR0C+MmBwuM/AdX2UKGgGR7/QczqKP4mDaAdLA2gIR0C+MybApKBedX2UKGgGR7+c0xdpqREGaAdLAWgIR0C+MmKtxMnJdX2UKGgGR7/INvOyE+PjaAdLA2gIR0C+MvUIPbwjdX2UKGgGR7/JrjYI0IkaaAdLA2gIR0C+Mq7zkIX1dX2UKGgGR7+4kka/ATIvaAdLAmgIR0C+Myx2jfvXdX2UKGgGR7+mE7GNrCWNaAdLAWgIR0C+My704BFNdX2UKGgGR7/WVwPy08eTaAdLA2gIR0C+Mmrfk3judX2UKGgGR7+5bnoxHoX9aAdLAmgIR0C+MzMS5AhTdX2UKGgGR7/bl+EytV7yaAdLBGgIR0C+Mrjho/RmdX2UKGgGR7+n6ZYxL0z1aAdLAWgIR0C+MrsVpKzzdX2UKGgGR7/CwUQCjk+5aAdLA2gIR0C+MnFSjxkNdX2UKGgGR7/gHIZIg/1QaAdLBmgIR0C+MwTeoDPodX2UKGgGR7++YoiLVFx5aAdLAmgIR0C+MsDSw4bTdX2UKGgGR7/RooNNJvpAaAdLA2gIR0C+MnkofCAMdX2UKGgGR7/fXlbNbC79aAdLBmgIR0C+M0GcOLBLdX2UKGgGR7/XzabnX/YKaAdLBGgIR0C+Mw2sq8UVdX2UKGgGR7/S5ksjFAE/aAdLA2gIR0C+Msef/WDpdX2UKGgGR7+2lzltCRfXaAdLAmgIR0C+Mn3KKYRedWUu"
56
  },
57
  "ep_success_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
  },
61
- "_n_updates": 150000,
62
  "n_steps": 5,
63
- "gamma": 0.99,
64
  "gae_lambda": 1.0,
65
  "ent_coef": 0.0,
66
  "vf_coef": 0.5,
@@ -89,9 +89,9 @@
89
  "high_repr": "1.0",
90
  "_np_random": null
91
  },
92
- "n_envs": 4,
93
  "lr_schedule": {
94
  ":type:": "<class 'function'>",
95
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
  }
97
  }
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3b88cb8430>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f3b88ca6800>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
19
  "weight_decay": 0
20
  }
21
  },
22
+ "num_timesteps": 2000000,
23
+ "_total_timesteps": 2000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
+ "start_time": 1699050748656966146,
28
+ "learning_rate": 0.002,
29
  "tensorboard_log": null,
30
  "_last_obs": {
31
  ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAAboxFwBbPsD/hziDAI9LmPysUF8CYy+K+ipsiQAAmob9CZJ4/eOXxvxNsYj8N+yY/0uWKPgVa9btbEM4+Ix/qPjImGcDpwnQ/E4dUP89oxz6aS4Q+7uumvqNT076mgaY+6fUEQCokC8BPKY4/M6oAQCbALMCm+jNAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAc0Clv/ceHz9VlXK/2sEqP8M6vL+CVpK/Xw3BPybhZb47mpm+pM3EvgxF5T4Avcg/csWPP58uNT/jy6w/CmiUPlj8w78+NVy+oSScPyUfRj+mMsK/YAeiv3z0Wr+qMJE/QDXKP2TQpr/FycK+KNmrP0ACz79sqBs/lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAABujEXAFs+wP+HOIMBfZ4e/CWvGP7ksIb8j0uY/KxQXwJjL4r4tHE4/jnFlv9D2qj+KmyJAACahv0Jknj8u0fE+aw81Ppa0Er945fG/E2xiPw37Jj/82nw/qSuev+0eWz7S5Yo+BVr1u1sQzj6xfLY+IPBBu/ZYrz4jH+o+MiYZwOnCdD8/OhK+52I3v5H36T8Th1Q/z2jHPppLhD5agqk/Nf/MP44Inb/u66a+o1PTvqaBpj6k3Ea/fufNv/HOWz/p9QRAKiQLwE8pjj+VK8M+QtLRP8Y/UL4zqgBAJsAswKb6M0CN98c+sCU9vytiir+UaA5LCksGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-3.0866961 1.3813198 -2.512627 ]\n [ 1.8032879 -2.360606 -0.44295955]\n [ 2.5407434 -1.2589722 1.2374346 ]\n [-1.8898153 0.8844616 0.65226823]\n [ 0.27128464 -0.00748754 0.40246853]\n [ 0.4572688 -2.3929563 0.9560991 ]\n [ 0.83018607 0.3894715 0.2583893 ]\n [-0.32601875 -0.41274747 0.3252079 ]\n [ 2.0775092 -2.1740823 1.1106356 ]\n [ 2.0103881 -2.6992278 2.8121734 ]]",
34
+ "desired_goal": "[[-1.2910293 0.62156624 -0.9475911 ]\n [ 0.66702044 -1.4705433 -1.143265 ]\n [ 1.5082206 -0.22449169 -0.3000048 ]\n [-0.3843814 0.4477924 1.5682678 ]\n [ 1.123213 0.70774263 1.3499721 ]\n [ 0.28985626 -1.5311384 -0.21504685]\n [ 1.2198678 0.7739127 -1.5171707 ]\n [-1.2658501 -0.85529304 1.1342976 ]\n [ 1.5797501 -1.3032346 -0.38044563]\n [ 1.3425646 -1.6172562 0.60803866]]",
35
+ "observation": "[[-3.0866961e+00 1.3813198e+00 -2.5126269e+00 -1.0578421e+00\n 1.5501415e+00 -6.2958866e-01]\n [ 1.8032879e+00 -2.3606060e+00 -4.4295955e-01 8.0511743e-01\n -8.9626396e-01 1.3356571e+00]\n [ 2.5407434e+00 -1.2589722e+00 1.2374346e+00 4.7229904e-01\n 1.7681663e-01 -5.7306802e-01]\n [-1.8898153e+00 8.8446158e-01 6.5226823e-01 9.8771644e-01\n -1.2357074e+00 2.1398516e-01]\n [ 2.7128464e-01 -7.4875378e-03 4.0246853e-01 3.5642007e-01\n -2.9592589e-03 3.4247559e-01]\n [ 4.5726880e-01 -2.3929563e+00 9.5609909e-01 -1.4280032e-01\n -7.1635288e-01 1.8278676e+00]\n [ 8.3018607e-01 3.8947150e-01 2.5838929e-01 1.3242905e+00\n 1.6015383e+00 -1.2268236e+00]\n [-3.2601875e-01 -4.1274747e-01 3.2520789e-01 -7.7680421e-01\n -1.6086271e+00 8.5862643e-01]\n [ 2.0775092e+00 -2.1740823e+00 1.1106356e+00 3.8119188e-01\n 1.6392291e+00 -2.0336828e-01]\n [ 2.0103881e+00 -2.6992278e+00 2.8121734e+00 3.9056054e-01\n -7.3885632e-01 -1.0811208e+00]]"
36
  },
37
  "_last_episode_starts": {
38
  ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAAAAAABAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="
40
  },
41
  "_last_original_obs": {
42
  ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAmm6sPYgh1LxJNY49rA8UvqtqOTyDc8s95+/qPSSN7TxMngM8wjANviZMgz3Va1A+fk4MPu+5Ar4I9Q4+TgAMvZSssb1l8rI9i6sJPXUfFL7z8IY+qrU3PLWBtT1BZFk+nOyAPWGqf73UoRs+tAMOvte8Xj1qFeU9lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCksGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.08419533 -0.0258949 0.06943757]\n [-0.14459103 0.01131694 0.09934141]\n [ 0.11471539 0.02899797 0.00803335]\n [-0.13788131 0.06411009 0.20353635]\n [ 0.13701817 -0.1276624 0.1396066 ]\n [-0.03417998 -0.08675495 0.08737639]\n [ 0.03361086 -0.14465125 0.26355705]\n [ 0.01121275 0.0886263 0.2122965 ]\n [ 0.0629513 -0.06241835 0.15198451]\n [-0.138686 0.05437931 0.11185725]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
  },
48
  "_episode_num": 0,
49
  "use_sde": false,
 
52
  "_stats_window_size": 100,
53
  "ep_info_buffer": {
54
  ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9j5zo2XLNiMAWyUSwSMAXSUR0C1MZDySV4YdX2UKGgGR7/exoqTbFjvaAdLBGgIR0C1MV+/5+H8dX2UKGgGR7/M7o0Q9RrKaAdLA2gIR0C1MXK+evpydX2UKGgGR7/hZ+6RQrMDaAdLBWgIR0C1Ma8VtXPrdX2UKGgGR8AcNNJvo/zKaAdLMmgIR0C1MRxo24usdX2UKGgGR7/YoZydWhh6aAdLBGgIR0C1MYnFYMfBdX2UKGgGR7/ROrhisny/aAdLA2gIR0C1McK42CNCdX2UKGgGR8AYKE7GNrCWaAdLMmgIR0C1MJ46S1VpdX2UKGgGR7+2vs7dSEUTaAdLAmgIR0C1MZcTN+spdX2UKGgGR8AcbBuXNTtLaAdLMmgIR0C1Mj1fzBhydX2UKGgGR7/O4mTkhib2aAdLA2gIR0C1MLKn752ydX2UKGgGR8Addjz7MxGlaAdLMmgIR0C1Mnu7pV0cdX2UKGgGR7/K+4b0e2d/aAdLA2gIR0C1MauVLSNPdX2UKGgGR7+9QrMC9ytFaAdLAmgIR0C1MkyMcZLqdX2UKGgGR7/THM2WIGhVaAdLBGgIR0C1MMt4Z/CqdX2UKGgGR7/YySmqHXVcaAdLBGgIR0C1MpPTCtRvdX2UKGgGR7/MGXXyy2QXaAdLA2gIR0C1Mq/dIoVmdX2UKGgGR8Ac4wSJ0nw5aAdLMmgIR0C1MbpTuOS4dX2UKGgGR7+9CdBjWkJsaAdLAmgIR0C1MsMz/IbPdX2UKGgGR8AVp9y925hCaAdLMmgIR0C1MWQSnLq2dX2UKGgGR7/nBnjABT4taAdLCmgIR0C1MqL2tdRjdX2UKGgGR7/Cz41xbSqmaAdLAmgIR0C1MXlFlTWHdX2UKGgGR7/LlWfbsWweaAdLA2gIR0C1Mr/PLPlddX2UKGgGR7/ciQDFId2gaAdLBmgIR0C1Mfarq+rVdX2UKGgGR7/aakRBeHBUaAdLBGgIR0C1MZ5n13+udX2UKGgGR7+/eBQN0/4ZaAdLAmgIR0C1MtQWN3nqdX2UKGgGR7/UQlKK508vaAdLA2gIR0C1Mu+/k/8mdX2UKGgGR7/VTspobn5jaAdLBGgIR0C1McYoy9EkdX2UKGgGR7+6CrcTJyQxaAdLAmgIR0C1Md3lGPPtdX2UKGgGR7/Nw9aEBbOeaAdLA2gIR0C1MxEFr2xqdX2UKGgGR7/ID2alUIcBaAdLBGgIR0C1MzgyyleodX2UKGgGR7/W8J2MbWEsaAdLBWgIR0C1Mg8xCY1HdX2UKGgGR7/e8LronrpraAdLBWgIR0C1M2hYq5LAdX2UKGgGR7/b12q1gH/taAdLBmgIR0C1MkfwuuifdX2UKGgGR8AVeGvfTCtSaAdLMmgIR0C1MhjVtoBadX2UKGgGR7+1eC04R28qaAdLAmgIR0C1MltMK1G9dX2UKGgGR7/PGnXNC7btaAdLA2gIR0C1Mni0WuYAdX2UKGgGR8AXQ6cRUWEcaAdLMmgIR0C1M3iup0fYdX2UKGgGR7/EsYl6Z6UraAdLAmgIR0C1MosrEtNBdX2UKGgGR8AK1zuF6AvtaAdLJWgIR0C1MjUDhcZ+dX2UKGgGR7/IdqcmShalaAdLA2gIR0C1MqhXfZVXdX2UKGgGR8AVBvfj0cwQaAdLMmgIR0C1MuLzGxUvdX2UKGgGR7+o6XBxgiNbaAdLAWgIR0C1MrKQA+6idX2UKGgGR8AfSjwhGH58aAdLMmgIR0C1M5GN70FsdX2UKGgGR7+74xk/bCaaaAdLAmgIR0C1M6R/qgRLdX2UKGgGR7/SsIE8q4H5aAdLBWgIR0C1MxPfXPJJdX2UKGgGR7/ZC6Ymb9ZSaAdLBWgIR0C1MuONxVABdX2UKGgGR7+gw482aUiZaAdLAWgIR0C1Mx7r1M/RdX2UKGgGR8AV4vFm4AjqaAdLMmgIR0C1M4hk/bCadX2UKGgGR7+1AJLM9r44aAdLAmgIR0C1Mve09hZydX2UKGgGR7/BdvbXYlIFaAdLAmgIR0C1MzOG47RwdX2UKGgGR8AZ242CNCJGaAdLMmgIR0C1NKtrO7g9dX2UKGgGR7/vdehPCVKPaAdLC2gIR0C1M2Ed7v5QdX2UKGgGR8ASz+98JD3NaAdLMmgIR0C1M9zklu3udX2UKGgGR7/hzz/ZM+NcaAdLB2gIR0C1NPF3hXKbdX2UKGgGR7+o5cTrVvuPaAdLAWgIR0C1NPsry1/ldX2UKGgGR7/T1+AmReTnaAdLA2gIR0C1M/wl4TsZdX2UKGgGR7/NtKIznA6/aAdLA2gIR0C1NRipWFN+dX2UKGgGR7/MxmCiAUcoaAdLA2gIR0C1NBnyup0fdX2UKGgGR7+5Wo3rD63zaAdLAmgIR0C1NC8VLzwudX2UKGgGR7+dPDYRNATqaAdLAWgIR0C1NDk/bCaadX2UKGgGR7/YtTkyULUkaAdLBGgIR0C1NUEo8ZDRdX2UKGgGR7/Lb1yvLX+VaAdLA2gIR0C1NFdDhLoPdX2UKGgGR7/J3lCCz1K5aAdLA2gIR0C1NWIlpoK2dX2UKGgGR8AMTQJHAh0RaAdLJ2gIR0C1NPpaJQ+EdX2UKGgGR7/NlcyFfzBiaAdLA2gIR0C1NHiKrJbMdX2UKGgGR8AWxyZKFqSHaAdLMmgIR0C1NVgvQF9sdX2UKGgGR7/Zg8r7O3UhaAdLBGgIR0C1NSUxASnMdX2UKGgGR7/SFBppN9H+aAdLA2gIR0C1NJjiKiwjdX2UKGgGR8AVo7A+IMz/aAdLMmgIR0C1NAmWpqASdX2UKGgGR7/BbnoxHoX9aAdLAmgIR0C1NW1klNUPdX2UKGgGR7/X1fE4vN/waAdLBGgIR0C1NMWSZBszdX2UKGgGR7/eujASFoL5aAdLBmgIR0C1NWYhdMTOdX2UKGgGR7+60ngHeJpGaAdLAmgIR0C1NNtYnv2HdX2UKGgGR7/gJ2ECeVcEaAdLBmgIR0C1NEwM6RyPdX2UKGgGR7+XeBQN0/4ZaAdLAWgIR0C1NFaiwjdIdX2UKGgGR7+8siB5HEuQaAdLAmgIR0C1NPGFi8WcdX2UKGgGR8AWo0fozN2UaAdLMmgIR0C1NDD8UEgXdX2UKGgGR7/UJq7Ackt3aAdLBWgIR0C1NZ3fMwDedX2UKGgGR7/VblA/s3Q2aAdLBGgIR0C1NIK46Oo6dX2UKGgGR7/WhJAdGRV7aAdLBGgIR0C1NR0UfxMGdX2UKGgGR7/FDGcWj45+aAdLAmgIR0C1NJaUeMhpdX2UKGgGR7/FCfpUxVQzaAdLA2gIR0C1NT4qG1x9dX2UKGgGR8AVIlByCFsYaAdLMmgIR0C1Narvb48EdX2UKGgGR8AQhLpRoAXEaAdLMGgIR0C1NSN96TnrdX2UKGgGR8AbDOHFglWwaAdLMmgIR0C1NY4GdI5HdX2UKGgGR7/UgbIcR15jaAdLBGgIR0C1NWpZOi35dX2UKGgGR7/n0d7v5P/JaAdLC2gIR0C1NKnsolUqdX2UKGgGR7/TCHRCx/utaAdLBGgIR0C1NU7fDUExdX2UKGgGR7/du76Hj6vaaAdLBmgIR0C1NcODFqBVdX2UKGgGR7/WiBXjlxOtaAdLBGgIR0C1NWgAuIykdX2UKGgGR7/SKa5PM0P6aAdLA2gIR0C1NdQ84giedX2UKGgGR7+3FqBVdX1baAdLAmgIR0C1NXMwUQCkdX2UKGgGR8AamDVYp2ECaAdLMmgIR0C1NU+UY8+zdX2UKGgGR7/QEQoTfzjFaAdLA2gIR0C1NedxuKoAdX2UKGgGR7/JdE9dNWU9aAdLA2gIR0C1NYaFh5PedX2UKGgGR7+l/MGHHmzTaAdLAWgIR0C1Ne2VRk3CdX2UKGgGR7/FuPV/c32maAdLAmgIR0C1NZJcLSeAdX2UKGgGR7/QeP7vXsgMaAdLA2gIR0C1NWGrwOOKdX2UKGgGR7+/Uz9CNS62aAdLAmgIR0C1NfkFjd56dWUu"
56
  },
57
  "ep_success_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
  },
61
+ "_n_updates": 40000,
62
  "n_steps": 5,
63
+ "gamma": 0.97,
64
  "gae_lambda": 1.0,
65
  "ent_coef": 0.0,
66
  "vf_coef": 0.5,
 
89
  "high_repr": "1.0",
90
  "_np_random": null
91
  },
92
+ "n_envs": 10,
93
  "lr_schedule": {
94
  ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9gYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
  }
97
  }
a2c-PandaReachDense-v3/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:14e994bba18672812175b56e8fdb380af34df21b5796c41b82a295f6627b390d
3
  size 45167
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51fb7b595f9b429880385752a51de5c9849dd14c19af9cc6c2506a838185c549
3
  size 45167
a2c-PandaReachDense-v3/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d46d0f3b45af5393ea886573dbe3438a6f2c817f7767958770462b4e1262391a
3
  size 46447
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d36e3a4f7d32696de8313ac356305ae104be4c2a73cd63d24050cbb0d314f23e
3
  size 46447
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d6930140430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d6930138f80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698238361337270811, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhqqDPmLqRrwIbeM+hqqDPmLqRrwIbeM+hqqDPmLqRrwIbeM+hqqDPmLqRrwIbeM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAO4DLP+TThr+7IsE/e0itv3Zp3T5Sh+Y+I1+6Pyv3Ij+tQp2/+y2kPyFMub4sfp89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACGqoM+YupGvAht4z6FdgA/TfV6u6qFxz6GqoM+YupGvAht4z6FdgA/TfV6u6qFxz6GqoM+YupGvAht4z6FdgA/TfV6u6qFxz6GqoM+YupGvAht4z6FdgA/TfV6u6qFxz6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.25716037 -0.01214084 0.44419122]\n [ 0.25716037 -0.01214084 0.44419122]\n [ 0.25716037 -0.01214084 0.44419122]\n [ 0.25716037 -0.01214084 0.44419122]]", "desired_goal": "[[ 1.5898508 -1.0533414 1.5088724 ]\n [-1.3537744 0.43244523 0.45025116]\n [ 1.4560283 0.636584 -1.2285973 ]\n [ 1.2826532 -0.36190894 0.07787737]]", "observation": "[[ 0.25716037 -0.01214084 0.44419122 0.50180846 -0.00382932 0.38969165]\n [ 0.25716037 -0.01214084 0.44419122 0.50180846 -0.00382932 0.38969165]\n [ 0.25716037 -0.01214084 0.44419122 0.50180846 -0.00382932 0.38969165]\n [ 0.25716037 -0.01214084 0.44419122 0.50180846 -0.00382932 0.38969165]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACRHmvR/ASTyxCWU+7/fvvbcwxDxhjew8pYsyPQr/d7v4RlY+vZwCvmvfD75VCBk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11233718 0.01231387 0.22366978]\n [-0.11717211 0.02394901 0.02887601]\n [ 0.04359021 -0.00378412 0.2092551 ]\n [-0.12755103 -0.14050071 0.14944585]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7rR4QjD8+CMAWyUSwKMAXSUR0C+Ml6SxJNCdX2UKGgGR7/BGOMl1KXfaAdLAmgIR0C+MdDIzWPMdX2UKGgGR7/HhWo3rD64aAdLA2gIR0C+MphEWqLkdX2UKGgGR7/TcawUxmCiaAdLA2gIR0C+Mh4znA6/dX2UKGgGR798kdFOO802aAdLAWgIR0C+MpqRuCPIdX2UKGgGR7/MiwjdHlOoaAdLA2gIR0C+MmaaG5+ZdX2UKGgGR7+GoFV1fVqfaAdLAWgIR0C+Mp0voNd7dX2UKGgGR7/W6N2ki2UjaAdLA2gIR0C+Mdk0aZQYdX2UKGgGR7+ZLRKHwgDBaAdLAWgIR0C+Mds8DB/JdX2UKGgGR7/K+7Dl5nlGaAdLA2gIR0C+Mm1khA4XdX2UKGgGR7/Onx8UmD15aAdLBGgIR0C+MidR77bddX2UKGgGR7+fZmI0qH45aAdLAWgIR0C+MiqXKKYRdX2UKGgGR7/bTOgQHzH0aAdLBGgIR0C+MqbdWQwLdX2UKGgGR7/Kxkd3jdYXaAdLA2gIR0C+MeK3NLUTdX2UKGgGR7+/CWNWEK3NaAdLAmgIR0C+Mi7kKeCkdX2UKGgGR7/QnqFAVwglaAdLBGgIR0C+MndJ8OTadX2UKGgGR7/Ry5I6Kcd6aAdLA2gIR0C+Mq13IMjNdX2UKGgGR7/Pbs4T9KmLaAdLA2gIR0C+MeliKBNFdX2UKGgGR7/AlabF0gbIaAdLA2gIR0C+MjZ88cMmdX2UKGgGR7+ou5BkZrHmaAdLAWgIR0C+Meye7L+xdX2UKGgGR7/K5xzaK1ohaAdLA2gIR0C+Mn7fk3judX2UKGgGR7/S5oGpuMuOaAdLA2gIR0C+MrUiUxEfdX2UKGgGR7/DpM6BAfMfaAdLAmgIR0C+MoMIiTt+dX2UKGgGR7/ADoQnQY1paAdLAmgIR0C+MrlLeyiVdX2UKGgGR7/fyIYWLxZuaAdLBGgIR0C+Mj8tXgccdX2UKGgGR7/Y2nKnvUjLaAdLBGgIR0C+MfWIoE0SdX2UKGgGR7+lI5HVf/m1aAdLAWgIR0C+Mr0Aksz3dX2UKGgGR7+0kdFOO802aAdLAmgIR0C+MokJWvKVdX2UKGgGR7+oqslsxfv4aAdLAWgIR0C+MfkD6nBMdX2UKGgGR7/FEtuk1uR+aAdLA2gIR0C+Mkce4kNXdX2UKGgGR7+0iA2AG0NSaAdLAmgIR0C+Mf1GPPszdX2UKGgGR7/Jvegte2NOaAdLA2gIR0C+MsOK0lZ6dX2UKGgGR7/WmP5pJwsHaAdLBGgIR0C+MpGs/6frdX2UKGgGR7+7uogmqo60aAdLAmgIR0C+MskHpr1vdX2UKGgGR7/RdJJ5E+gUaAdLA2gIR0C+Mk8Oby6MdX2UKGgGR7/Sm9g4OtnxaAdLA2gIR0C+MgVBhQWOdX2UKGgGR7+y5SWJJoTPaAdLAmgIR0C+MlNI5HVgdX2UKGgGR7/YKKYRdyDJaAdLBGgIR0C+Mpu1OTJRdX2UKGgGR7/Stb9qDbrUaAdLA2gIR0C+MgvLxI8RdX2UKGgGR7/Zc/MW43FUaAdLBGgIR0C+MtI9C/oJdX2UKGgGR7+6inHeaa1DaAdLAmgIR0C+MtekUKzBdX2UKGgGR7/R+LWI42jxaAdLA2gIR0C+MqO4smOVdX2UKGgGR7/YG1QZXMhYaAdLBGgIR0C+Ml27z06HdX2UKGgGR7/UiWVu76HkaAdLA2gIR0C+MhPoNd7fdX2UKGgGR7/HIxQBPsRhaAdLA2gIR0C+Mt5Aprk9dX2UKGgGR7/R3XI2fkFOaAdLA2gIR0C+MqpLmITHdX2UKGgGR7/PSNOuaF23aAdLA2gIR0C+MmQ9/z8QdX2UKGgGR7/NHFPznRsuaAdLA2gIR0C+Mhp0jkdWdX2UKGgGR7+SIHkcS5AhaAdLAWgIR0C+MuH6InBtdX2UKGgGR7+7yWiUPhAGaAdLAmgIR0C+Mh/1xsEadX2UKGgGR7/K8PnSv1UVaAdLA2gIR0C+MrJd0JWvdX2UKGgGR7/SXYlIEr5JaAdLA2gIR0C+MmxubZvldX2UKGgGR7/V48EFGG21aAdLA2gIR0C+MujA8B+4dX2UKGgGR7/BwTdtVJcxaAdLAmgIR0C+MnCQPqcFdX2UKGgGR7/LNBWxQizLaAdLA2gIR0C+MiazmfXgdX2UKGgGR7/JGuLaVUuMaAdLA2gIR0C+MroKIBRydX2UKGgGR7/MHcDbJwKjaAdLA2gIR0C+MvAo9cKPdX2UKGgGR7/MnCwbEP1+aAdLA2gIR0C+Mi4BikO7dX2UKGgGR7/K1QZXMhX9aAdLA2gIR0C+MsA6IWP+dX2UKGgGR7/atXxOLzf8aAdLBGgIR0C+MnophF3IdX2UKGgGR7/AMUh3aBZqaAdLAmgIR0C+MjJjYqXodX2UKGgGR7+zqzJIUahpaAdLAmgIR0C+Mn+anaWYdX2UKGgGR7/E09hZyMkyaAdLA2gIR0C+MsfjOs1bdX2UKGgGR7/Agntv4ubraAdLAmgIR0C+MoSFj/dZdX2UKGgGR7/Rkhib2Dg7aAdLA2gIR0C+MjsAaNuMdX2UKGgGR7/D1e0G/vfCaAdLAmgIR0C+Ms4f4h2XdX2UKGgGR7/I+pwS8J2MaAdLA2gIR0C+Mo2hVU++dX2UKGgGR7/TW7e2uxKQaAdLA2gIR0C+MkPReC04dX2UKGgGR7/ULFXJYDDCaAdLA2gIR0C+MtYInjQzdX2UKGgGR7+7gbZOBUaRaAdLAmgIR0C+MpIacZtOdX2UKGgGR7/0IzFdcB2faAdLDmgIR0C+MxPd69kCdX2UKGgGR7/dbd8Aq/dqaAdLBGgIR0C+Mt/w3HaOdX2UKGgGR7/RyhzvJA+qaAdLA2gIR0C+Mpng9/z8dX2UKGgGR7+2uyNXHR1HaAdLAmgIR0C+Mxgk5ZKWdX2UKGgGR7/hemelKsdUaAdLB2gIR0C+MlQ/HHWCdX2UKGgGR7/RHc1wYLssaAdLA2gIR0C+MuZylvZRdX2UKGgGR7/SIkqtozvaaAdLA2gIR0C+MqBXGOuJdX2UKGgGR7/Q/+85CF9KaAdLA2gIR0C+Mx/epGWldX2UKGgGR7/GFuejEehgaAdLA2gIR0C+Mlv1tfoidX2UKGgGR7/QgXuVopQUaAdLA2gIR0C+Mu4s7MgVdX2UKGgGR7/Ha/yoXKr8aAdLA2gIR0C+Mqg22oegdX2UKGgGR7+8feUILPUsaAdLAmgIR0C+MmBwuM/AdX2UKGgGR7/QczqKP4mDaAdLA2gIR0C+MybApKBedX2UKGgGR7+c0xdpqREGaAdLAWgIR0C+MmKtxMnJdX2UKGgGR7/INvOyE+PjaAdLA2gIR0C+MvUIPbwjdX2UKGgGR7/JrjYI0IkaaAdLA2gIR0C+Mq7zkIX1dX2UKGgGR7+4kka/ATIvaAdLAmgIR0C+Myx2jfvXdX2UKGgGR7+mE7GNrCWNaAdLAWgIR0C+My704BFNdX2UKGgGR7/WVwPy08eTaAdLA2gIR0C+Mmrfk3judX2UKGgGR7+5bnoxHoX9aAdLAmgIR0C+MzMS5AhTdX2UKGgGR7/bl+EytV7yaAdLBGgIR0C+Mrjho/RmdX2UKGgGR7+n6ZYxL0z1aAdLAWgIR0C+MrsVpKzzdX2UKGgGR7/CwUQCjk+5aAdLA2gIR0C+MnFSjxkNdX2UKGgGR7/gHIZIg/1QaAdLBmgIR0C+MwTeoDPodX2UKGgGR7++YoiLVFx5aAdLAmgIR0C+MsDSw4bTdX2UKGgGR7/RooNNJvpAaAdLA2gIR0C+MnkofCAMdX2UKGgGR7/fXlbNbC79aAdLBmgIR0C+M0GcOLBLdX2UKGgGR7/XzabnX/YKaAdLBGgIR0C+Mw2sq8UVdX2UKGgGR7/S5ksjFAE/aAdLA2gIR0C+Msef/WDpdX2UKGgGR7+2lzltCRfXaAdLAmgIR0C+Mn3KKYRedWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 150000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3b88cb8430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3b88ca6800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699050748656966146, "learning_rate": 0.002, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAAboxFwBbPsD/hziDAI9LmPysUF8CYy+K+ipsiQAAmob9CZJ4/eOXxvxNsYj8N+yY/0uWKPgVa9btbEM4+Ix/qPjImGcDpwnQ/E4dUP89oxz6aS4Q+7uumvqNT076mgaY+6fUEQCokC8BPKY4/M6oAQCbALMCm+jNAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAc0Clv/ceHz9VlXK/2sEqP8M6vL+CVpK/Xw3BPybhZb47mpm+pM3EvgxF5T4Avcg/csWPP58uNT/jy6w/CmiUPlj8w78+NVy+oSScPyUfRj+mMsK/YAeiv3z0Wr+qMJE/QDXKP2TQpr/FycK+KNmrP0ACz79sqBs/lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAABujEXAFs+wP+HOIMBfZ4e/CWvGP7ksIb8j0uY/KxQXwJjL4r4tHE4/jnFlv9D2qj+KmyJAACahv0Jknj8u0fE+aw81Ppa0Er945fG/E2xiPw37Jj/82nw/qSuev+0eWz7S5Yo+BVr1u1sQzj6xfLY+IPBBu/ZYrz4jH+o+MiYZwOnCdD8/OhK+52I3v5H36T8Th1Q/z2jHPppLhD5agqk/Nf/MP44Inb/u66a+o1PTvqaBpj6k3Ea/fufNv/HOWz/p9QRAKiQLwE8pjj+VK8M+QtLRP8Y/UL4zqgBAJsAswKb6M0CN98c+sCU9vytiir+UaA5LCksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-3.0866961 1.3813198 -2.512627 ]\n [ 1.8032879 -2.360606 -0.44295955]\n [ 2.5407434 -1.2589722 1.2374346 ]\n [-1.8898153 0.8844616 0.65226823]\n [ 0.27128464 -0.00748754 0.40246853]\n [ 0.4572688 -2.3929563 0.9560991 ]\n [ 0.83018607 0.3894715 0.2583893 ]\n [-0.32601875 -0.41274747 0.3252079 ]\n [ 2.0775092 -2.1740823 1.1106356 ]\n [ 2.0103881 -2.6992278 2.8121734 ]]", "desired_goal": "[[-1.2910293 0.62156624 -0.9475911 ]\n [ 0.66702044 -1.4705433 -1.143265 ]\n [ 1.5082206 -0.22449169 -0.3000048 ]\n [-0.3843814 0.4477924 1.5682678 ]\n [ 1.123213 0.70774263 1.3499721 ]\n [ 0.28985626 -1.5311384 -0.21504685]\n [ 1.2198678 0.7739127 -1.5171707 ]\n [-1.2658501 -0.85529304 1.1342976 ]\n [ 1.5797501 -1.3032346 -0.38044563]\n [ 1.3425646 -1.6172562 0.60803866]]", "observation": "[[-3.0866961e+00 1.3813198e+00 -2.5126269e+00 -1.0578421e+00\n 1.5501415e+00 -6.2958866e-01]\n [ 1.8032879e+00 -2.3606060e+00 -4.4295955e-01 8.0511743e-01\n -8.9626396e-01 1.3356571e+00]\n [ 2.5407434e+00 -1.2589722e+00 1.2374346e+00 4.7229904e-01\n 1.7681663e-01 -5.7306802e-01]\n [-1.8898153e+00 8.8446158e-01 6.5226823e-01 9.8771644e-01\n -1.2357074e+00 2.1398516e-01]\n [ 2.7128464e-01 -7.4875378e-03 4.0246853e-01 3.5642007e-01\n -2.9592589e-03 3.4247559e-01]\n [ 4.5726880e-01 -2.3929563e+00 9.5609909e-01 -1.4280032e-01\n -7.1635288e-01 1.8278676e+00]\n [ 8.3018607e-01 3.8947150e-01 2.5838929e-01 1.3242905e+00\n 1.6015383e+00 -1.2268236e+00]\n [-3.2601875e-01 -4.1274747e-01 3.2520789e-01 -7.7680421e-01\n -1.6086271e+00 8.5862643e-01]\n [ 2.0775092e+00 -2.1740823e+00 1.1106356e+00 3.8119188e-01\n 1.6392291e+00 -2.0336828e-01]\n [ 2.0103881e+00 -2.6992278e+00 2.8121734e+00 3.9056054e-01\n -7.3885632e-01 -1.0811208e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAAAAAABAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAmm6sPYgh1LxJNY49rA8UvqtqOTyDc8s95+/qPSSN7TxMngM8wjANviZMgz3Va1A+fk4MPu+5Ar4I9Q4+TgAMvZSssb1l8rI9i6sJPXUfFL7z8IY+qrU3PLWBtT1BZFk+nOyAPWGqf73UoRs+tAMOvte8Xj1qFeU9lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08419533 -0.0258949 0.06943757]\n [-0.14459103 0.01131694 0.09934141]\n [ 0.11471539 0.02899797 0.00803335]\n [-0.13788131 0.06411009 0.20353635]\n [ 0.13701817 -0.1276624 0.1396066 ]\n [-0.03417998 -0.08675495 0.08737639]\n [ 0.03361086 -0.14465125 0.26355705]\n [ 0.01121275 0.0886263 0.2122965 ]\n [ 0.0629513 -0.06241835 0.15198451]\n [-0.138686 0.05437931 0.11185725]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9j5zo2XLNiMAWyUSwSMAXSUR0C1MZDySV4YdX2UKGgGR7/exoqTbFjvaAdLBGgIR0C1MV+/5+H8dX2UKGgGR7/M7o0Q9RrKaAdLA2gIR0C1MXK+evpydX2UKGgGR7/hZ+6RQrMDaAdLBWgIR0C1Ma8VtXPrdX2UKGgGR8AcNNJvo/zKaAdLMmgIR0C1MRxo24usdX2UKGgGR7/YoZydWhh6aAdLBGgIR0C1MYnFYMfBdX2UKGgGR7/ROrhisny/aAdLA2gIR0C1McK42CNCdX2UKGgGR8AYKE7GNrCWaAdLMmgIR0C1MJ46S1VpdX2UKGgGR7+2vs7dSEUTaAdLAmgIR0C1MZcTN+spdX2UKGgGR8AcbBuXNTtLaAdLMmgIR0C1Mj1fzBhydX2UKGgGR7/O4mTkhib2aAdLA2gIR0C1MLKn752ydX2UKGgGR8Addjz7MxGlaAdLMmgIR0C1Mnu7pV0cdX2UKGgGR7/K+4b0e2d/aAdLA2gIR0C1MauVLSNPdX2UKGgGR7+9QrMC9ytFaAdLAmgIR0C1MkyMcZLqdX2UKGgGR7/THM2WIGhVaAdLBGgIR0C1MMt4Z/CqdX2UKGgGR7/YySmqHXVcaAdLBGgIR0C1MpPTCtRvdX2UKGgGR7/MGXXyy2QXaAdLA2gIR0C1Mq/dIoVmdX2UKGgGR8Ac4wSJ0nw5aAdLMmgIR0C1MbpTuOS4dX2UKGgGR7+9CdBjWkJsaAdLAmgIR0C1MsMz/IbPdX2UKGgGR8AVp9y925hCaAdLMmgIR0C1MWQSnLq2dX2UKGgGR7/nBnjABT4taAdLCmgIR0C1MqL2tdRjdX2UKGgGR7/Cz41xbSqmaAdLAmgIR0C1MXlFlTWHdX2UKGgGR7/LlWfbsWweaAdLA2gIR0C1Mr/PLPlddX2UKGgGR7/ciQDFId2gaAdLBmgIR0C1Mfarq+rVdX2UKGgGR7/aakRBeHBUaAdLBGgIR0C1MZ5n13+udX2UKGgGR7+/eBQN0/4ZaAdLAmgIR0C1MtQWN3nqdX2UKGgGR7/UQlKK508vaAdLA2gIR0C1Mu+/k/8mdX2UKGgGR7/VTspobn5jaAdLBGgIR0C1McYoy9EkdX2UKGgGR7+6CrcTJyQxaAdLAmgIR0C1Md3lGPPtdX2UKGgGR7/Nw9aEBbOeaAdLA2gIR0C1MxEFr2xqdX2UKGgGR7/ID2alUIcBaAdLBGgIR0C1MzgyyleodX2UKGgGR7/W8J2MbWEsaAdLBWgIR0C1Mg8xCY1HdX2UKGgGR7/e8LronrpraAdLBWgIR0C1M2hYq5LAdX2UKGgGR7/b12q1gH/taAdLBmgIR0C1MkfwuuifdX2UKGgGR8AVeGvfTCtSaAdLMmgIR0C1MhjVtoBadX2UKGgGR7+1eC04R28qaAdLAmgIR0C1MltMK1G9dX2UKGgGR7/PGnXNC7btaAdLA2gIR0C1Mni0WuYAdX2UKGgGR8AXQ6cRUWEcaAdLMmgIR0C1M3iup0fYdX2UKGgGR7/EsYl6Z6UraAdLAmgIR0C1MosrEtNBdX2UKGgGR8AK1zuF6AvtaAdLJWgIR0C1MjUDhcZ+dX2UKGgGR7/IdqcmShalaAdLA2gIR0C1MqhXfZVXdX2UKGgGR8AVBvfj0cwQaAdLMmgIR0C1MuLzGxUvdX2UKGgGR7+o6XBxgiNbaAdLAWgIR0C1MrKQA+6idX2UKGgGR8AfSjwhGH58aAdLMmgIR0C1M5GN70FsdX2UKGgGR7+74xk/bCaaaAdLAmgIR0C1M6R/qgRLdX2UKGgGR7/SsIE8q4H5aAdLBWgIR0C1MxPfXPJJdX2UKGgGR7/ZC6Ymb9ZSaAdLBWgIR0C1MuONxVABdX2UKGgGR7+gw482aUiZaAdLAWgIR0C1Mx7r1M/RdX2UKGgGR8AV4vFm4AjqaAdLMmgIR0C1M4hk/bCadX2UKGgGR7+1AJLM9r44aAdLAmgIR0C1Mve09hZydX2UKGgGR7/BdvbXYlIFaAdLAmgIR0C1MzOG47RwdX2UKGgGR8AZ242CNCJGaAdLMmgIR0C1NKtrO7g9dX2UKGgGR7/vdehPCVKPaAdLC2gIR0C1M2Ed7v5QdX2UKGgGR8ASz+98JD3NaAdLMmgIR0C1M9zklu3udX2UKGgGR7/hzz/ZM+NcaAdLB2gIR0C1NPF3hXKbdX2UKGgGR7+o5cTrVvuPaAdLAWgIR0C1NPsry1/ldX2UKGgGR7/T1+AmReTnaAdLA2gIR0C1M/wl4TsZdX2UKGgGR7/NtKIznA6/aAdLA2gIR0C1NRipWFN+dX2UKGgGR7/MxmCiAUcoaAdLA2gIR0C1NBnyup0fdX2UKGgGR7+5Wo3rD63zaAdLAmgIR0C1NC8VLzwudX2UKGgGR7+dPDYRNATqaAdLAWgIR0C1NDk/bCaadX2UKGgGR7/YtTkyULUkaAdLBGgIR0C1NUEo8ZDRdX2UKGgGR7/Lb1yvLX+VaAdLA2gIR0C1NFdDhLoPdX2UKGgGR7/J3lCCz1K5aAdLA2gIR0C1NWIlpoK2dX2UKGgGR8AMTQJHAh0RaAdLJ2gIR0C1NPpaJQ+EdX2UKGgGR7/NlcyFfzBiaAdLA2gIR0C1NHiKrJbMdX2UKGgGR8AWxyZKFqSHaAdLMmgIR0C1NVgvQF9sdX2UKGgGR7/Zg8r7O3UhaAdLBGgIR0C1NSUxASnMdX2UKGgGR7/SFBppN9H+aAdLA2gIR0C1NJjiKiwjdX2UKGgGR8AVo7A+IMz/aAdLMmgIR0C1NAmWpqASdX2UKGgGR7/BbnoxHoX9aAdLAmgIR0C1NW1klNUPdX2UKGgGR7/X1fE4vN/waAdLBGgIR0C1NMWSZBszdX2UKGgGR7/eujASFoL5aAdLBmgIR0C1NWYhdMTOdX2UKGgGR7+60ngHeJpGaAdLAmgIR0C1NNtYnv2HdX2UKGgGR7/gJ2ECeVcEaAdLBmgIR0C1NEwM6RyPdX2UKGgGR7+XeBQN0/4ZaAdLAWgIR0C1NFaiwjdIdX2UKGgGR7+8siB5HEuQaAdLAmgIR0C1NPGFi8WcdX2UKGgGR8AWo0fozN2UaAdLMmgIR0C1NDD8UEgXdX2UKGgGR7/UJq7Ackt3aAdLBWgIR0C1NZ3fMwDedX2UKGgGR7/VblA/s3Q2aAdLBGgIR0C1NIK46Oo6dX2UKGgGR7/WhJAdGRV7aAdLBGgIR0C1NR0UfxMGdX2UKGgGR7/FDGcWj45+aAdLAmgIR0C1NJaUeMhpdX2UKGgGR7/FCfpUxVQzaAdLA2gIR0C1NT4qG1x9dX2UKGgGR8AVIlByCFsYaAdLMmgIR0C1Narvb48EdX2UKGgGR8AQhLpRoAXEaAdLMGgIR0C1NSN96TnrdX2UKGgGR8AbDOHFglWwaAdLMmgIR0C1NY4GdI5HdX2UKGgGR7/UgbIcR15jaAdLBGgIR0C1NWpZOi35dX2UKGgGR7/n0d7v5P/JaAdLC2gIR0C1NKnsolUqdX2UKGgGR7/TCHRCx/utaAdLBGgIR0C1NU7fDUExdX2UKGgGR7/du76Hj6vaaAdLBmgIR0C1NcODFqBVdX2UKGgGR7/WiBXjlxOtaAdLBGgIR0C1NWgAuIykdX2UKGgGR7/SKa5PM0P6aAdLA2gIR0C1NdQ84giedX2UKGgGR7+3FqBVdX1baAdLAmgIR0C1NXMwUQCkdX2UKGgGR8AamDVYp2ECaAdLMmgIR0C1NU+UY8+zdX2UKGgGR7/QEQoTfzjFaAdLA2gIR0C1NedxuKoAdX2UKGgGR7/JdE9dNWU9aAdLA2gIR0C1NYaFh5PedX2UKGgGR7+l/MGHHmzTaAdLAWgIR0C1Ne2VRk3CdX2UKGgGR7/FuPV/c32maAdLAmgIR0C1NZJcLSeAdX2UKGgGR7/QeP7vXsgMaAdLA2gIR0C1NWGrwOOKdX2UKGgGR7+/Uz9CNS62aAdLAmgIR0C1NfkFjd56dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40000, "n_steps": 5, "gamma": 0.97, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 10, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9gYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -0.25084104500710963, "std_reward": 0.12982421761959864, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-25T15:05:10.913978"}
 
1
+ {"mean_reward": -0.19479694068431855, "std_reward": 0.13228556177801246, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-04T00:00:22.538780"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:95699c1128d08f224d99edf950d948c82d88516179727c93f278f3af9bf28d05
3
- size 2636
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef3344fecf364749fe5e1f6bb51ffdc6a14ea689bcb1fe72139f031e1c9d1afc
3
+ size 2641