Edit model card

SentenceTransformer based on cl-nagoya/ruri-base

This is a sentence-transformers model finetuned from cl-nagoya/ruri-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: cl-nagoya/ruri-base
  • Maximum Sequence Length: 32 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ZeniZeni/trained_model")
# Run inference
sentences = [
    '聖職者の前で言うことではなかったのぅ。',
    'いえ、お気になさらず',
    'そうだ。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 2,249,944 training samples
  • Columns: sent1, sent2, and label
  • Approximate statistics based on the first 1000 samples:
    sent1 sent2 label
    type string string int
    details
    • min: 4 tokens
    • mean: 13.37 tokens
    • max: 32 tokens
    • min: 3 tokens
    • mean: 12.76 tokens
    • max: 32 tokens
    • 0: ~69.70%
    • 1: ~30.30%
  • Samples:
    sent1 sent2 label
    黒坂常陸がいなくなれば極北のロシアより美味しいアドリア海沿岸攻めも出来る 今、大日本合藩帝国が支配している国々を奪い取りたいのよ。 1
    きみ… お前らより先に店にいたんだ 0
    入ってもよろしいですか! アンナ! 0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 11,363 evaluation samples
  • Columns: sent1, sent2, and label
  • Approximate statistics based on the first 1000 samples:
    sent1 sent2 label
    type string string int
    details
    • min: 4 tokens
    • mean: 14.1 tokens
    • max: 32 tokens
    • min: 3 tokens
    • mean: 12.47 tokens
    • max: 32 tokens
    • 0: ~68.50%
    • 1: ~31.50%
  • Samples:
    sent1 sent2 label
    本当に生存者は… さてな、それも分からん。 0
    それではこれより、殿と呼ばせていただきます 俺は新たな、九戸の家を興そう。 0
    くれぐれも、ご無事で… だから… 0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 10
  • remove_unused_columns: False
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: False
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss
0.0045 10 0.0297 -
0.0091 20 0.0268 -
0.0136 30 0.0249 -
0.0182 40 0.0242 -
0.0227 50 0.0239 -
0.0273 60 0.0239 -
0.0318 70 0.0235 -
0.0364 80 0.0235 -
0.0409 90 0.0233 -
0.0455 100 0.0233 0.024
0.0500 110 0.0233 -
0.0546 120 0.0231 -
0.0591 130 0.0229 -
0.0637 140 0.0225 -
0.0682 150 0.0229 -
0.0728 160 0.0227 -
0.0773 170 0.0228 -
0.0819 180 0.0229 -
0.0864 190 0.0223 -
0.0910 200 0.0227 0.0236
0.0955 210 0.0228 -
0.1001 220 0.0225 -
0.1046 230 0.0225 -
0.1092 240 0.0224 -
0.1137 250 0.0225 -
0.1183 260 0.0229 -
0.1228 270 0.022 -
0.1274 280 0.0226 -
0.1319 290 0.0224 -
0.1365 300 0.0222 0.0232
0.1410 310 0.0222 -
0.1456 320 0.022 -
0.1501 330 0.0223 -
0.1547 340 0.0223 -
0.1592 350 0.0222 -
0.1638 360 0.0223 -
0.1683 370 0.0219 -
0.1729 380 0.0223 -
0.1774 390 0.0219 -
0.1820 400 0.0218 0.0225
0.1865 410 0.0216 -
0.1911 420 0.0219 -
0.1956 430 0.0216 -
0.2002 440 0.022 -
0.2047 450 0.0214 -
0.2093 460 0.0219 -
0.2138 470 0.0216 -
0.2184 480 0.0215 -
0.2229 490 0.0218 -
0.2275 500 0.0214 0.0224
0.2320 510 0.0218 -
0.2366 520 0.0216 -
0.2411 530 0.0213 -
0.2457 540 0.0216 -
0.2502 550 0.0216 -
0.2548 560 0.0219 -
0.2593 570 0.0218 -
0.2639 580 0.0219 -
0.2684 590 0.022 -
0.2730 600 0.0215 0.0219
0.2775 610 0.0216 -
0.2821 620 0.0215 -
0.2866 630 0.0213 -
0.2912 640 0.0211 -
0.2957 650 0.0211 -
0.3003 660 0.0214 -
0.3048 670 0.0212 -
0.3094 680 0.0215 -
0.3139 690 0.0212 -
0.3185 700 0.0212 0.0218
0.3230 710 0.0214 -
0.3276 720 0.021 -
0.3321 730 0.0211 -
0.3367 740 0.0213 -
0.3412 750 0.0213 -
0.3458 760 0.0213 -
0.3503 770 0.0212 -
0.3549 780 0.0213 -
0.3594 790 0.0212 -
0.3640 800 0.0212 0.0220
0.3685 810 0.0216 -
0.3731 820 0.0213 -
0.3776 830 0.0216 -
0.3822 840 0.021 -
0.3867 850 0.0211 -
0.3913 860 0.0214 -
0.3958 870 0.0213 -
0.4004 880 0.0211 -
0.4049 890 0.0213 -
0.4095 900 0.0212 0.0218
0.4140 910 0.0207 -
0.4186 920 0.0209 -
0.4231 930 0.0208 -
0.4277 940 0.0206 -
0.4322 950 0.021 -
0.4368 960 0.0214 -
0.4413 970 0.021 -
0.4459 980 0.0212 -
0.4504 990 0.0211 -
0.4550 1000 0.0209 0.0214
0.4595 1010 0.0209 -
0.4641 1020 0.0206 -
0.4686 1030 0.0204 -
0.4732 1040 0.021 -
0.4777 1050 0.0202 -
0.4823 1060 0.0203 -
0.4868 1070 0.0211 -
0.4914 1080 0.0208 -
0.4959 1090 0.021 -
0.5005 1100 0.0208 0.0214
0.5050 1110 0.0206 -
0.5096 1120 0.0207 -
0.5141 1130 0.0209 -
0.5187 1140 0.0203 -
0.5232 1150 0.0206 -
0.5278 1160 0.0206 -
0.5323 1170 0.0208 -
0.5369 1180 0.0206 -
0.5414 1190 0.0204 -
0.5460 1200 0.021 0.0213
0.5505 1210 0.0206 -
0.5551 1220 0.0206 -
0.5596 1230 0.0208 -
0.5641 1240 0.0213 -
0.5687 1250 0.0206 -
0.5732 1260 0.0211 -
0.5778 1270 0.021 -
0.5823 1280 0.0208 -
0.5869 1290 0.0207 -
0.5914 1300 0.0204 0.0213
0.5960 1310 0.0202 -
0.6005 1320 0.0207 -
0.6051 1330 0.0209 -
0.6096 1340 0.02 -
0.6142 1350 0.0204 -
0.6187 1360 0.0205 -
0.6233 1370 0.0201 -
0.6278 1380 0.0202 -
0.6324 1390 0.021 -
0.6369 1400 0.0202 0.0210
0.6415 1410 0.0205 -
0.6460 1420 0.0205 -
0.6506 1430 0.0208 -
0.6551 1440 0.0205 -
0.6597 1450 0.0209 -
0.6642 1460 0.0205 -
0.6688 1470 0.0204 -
0.6733 1480 0.0207 -
0.6779 1490 0.0199 -
0.6824 1500 0.0205 0.0208
0.6870 1510 0.0201 -
0.6915 1520 0.0205 -
0.6961 1530 0.0205 -
0.7006 1540 0.0209 -
0.7052 1550 0.0206 -
0.7097 1560 0.0205 -
0.7143 1570 0.0205 -
0.7188 1580 0.0203 -
0.7234 1590 0.0199 -
0.7279 1600 0.0205 0.0208
0.7325 1610 0.0201 -
0.7370 1620 0.0202 -
0.7416 1630 0.0206 -
0.7461 1640 0.0207 -
0.7507 1650 0.0203 -
0.7552 1660 0.02 -
0.7598 1670 0.0204 -
0.7643 1680 0.0205 -
0.7689 1690 0.0199 -
0.7734 1700 0.0206 0.0206
0.7780 1710 0.0204 -
0.7825 1720 0.0205 -
0.7871 1730 0.0202 -
0.7916 1740 0.0204 -
0.7962 1750 0.0205 -
0.8007 1760 0.0202 -
0.8053 1770 0.0202 -
0.8098 1780 0.02 -
0.8144 1790 0.0203 -
0.8189 1800 0.0206 0.0205
0.8235 1810 0.0201 -
0.8280 1820 0.0207 -
0.8326 1830 0.02 -
0.8371 1840 0.0201 -
0.8417 1850 0.0205 -
0.8462 1860 0.02 -
0.8508 1870 0.0201 -
0.8553 1880 0.0199 -
0.8599 1890 0.0198 -
0.8644 1900 0.0197 0.0205
0.8690 1910 0.0201 -
0.8735 1920 0.0198 -
0.8781 1930 0.02 -
0.8826 1940 0.0198 -
0.8872 1950 0.0196 -
0.8917 1960 0.02 -
0.8963 1970 0.0204 -
0.9008 1980 0.0199 -
0.9054 1990 0.02 -
0.9099 2000 0.0199 0.0204
0.9145 2010 0.0204 -
0.9190 2020 0.0202 -
0.9236 2030 0.02 -
0.9281 2040 0.0198 -
0.9327 2050 0.0198 -
0.9372 2060 0.0197 -
0.9418 2070 0.0198 -
0.9463 2080 0.0202 -
0.9509 2090 0.0198 -
0.9554 2100 0.0201 0.0203
0.9600 2110 0.0201 -
0.9645 2120 0.02 -
0.9691 2130 0.0196 -
0.9736 2140 0.0201 -
0.9782 2150 0.0199 -
0.9827 2160 0.0198 -
0.9873 2170 0.02 -
0.9918 2180 0.0199 -
0.9964 2190 0.0194 -
1.0009 2200 0.0195 0.0206
1.0055 2210 0.0191 -
1.0100 2220 0.019 -
1.0146 2230 0.019 -
1.0191 2240 0.0189 -
1.0237 2250 0.019 -
1.0282 2260 0.0192 -
1.0328 2270 0.0193 -
1.0373 2280 0.0194 -
1.0419 2290 0.0184 -
1.0464 2300 0.0183 0.0201
1.0510 2310 0.0191 -
1.0555 2320 0.0189 -
1.0601 2330 0.0185 -
1.0646 2340 0.0186 -
1.0692 2350 0.0187 -
1.0737 2360 0.0196 -
1.0783 2370 0.0189 -
1.0828 2380 0.0188 -
1.0874 2390 0.0186 -
1.0919 2400 0.0191 0.0200
1.0965 2410 0.0188 -
1.1010 2420 0.0193 -
1.1056 2430 0.019 -
1.1101 2440 0.0187 -
1.1146 2450 0.0187 -
1.1192 2460 0.0192 -
1.1237 2470 0.0188 -
1.1283 2480 0.0188 -
1.1328 2490 0.0187 -
1.1374 2500 0.0183 0.0201
1.1419 2510 0.0185 -
1.1465 2520 0.0188 -
1.1510 2530 0.019 -
1.1556 2540 0.0186 -
1.1601 2550 0.0187 -
1.1647 2560 0.0185 -
1.1692 2570 0.0186 -
1.1738 2580 0.0188 -
1.1783 2590 0.0182 -
1.1829 2600 0.0185 0.0200
1.1874 2610 0.0186 -
1.1920 2620 0.0192 -
1.1965 2630 0.0186 -
1.2011 2640 0.0188 -
1.2056 2650 0.0185 -
1.2102 2660 0.0188 -
1.2147 2670 0.0188 -
1.2193 2680 0.0184 -
1.2238 2690 0.0186 -
1.2284 2700 0.0191 0.0199
1.2329 2710 0.0189 -
1.2375 2720 0.0191 -
1.2420 2730 0.0186 -
1.2466 2740 0.0183 -
1.2511 2750 0.0189 -
1.2557 2760 0.019 -
1.2602 2770 0.019 -
1.2648 2780 0.0183 -
1.2693 2790 0.0184 -
1.2739 2800 0.0186 0.0198
1.2784 2810 0.0193 -
1.2830 2820 0.0187 -
1.2875 2830 0.019 -
1.2921 2840 0.0189 -
1.2966 2850 0.0189 -
1.3012 2860 0.0187 -
1.3057 2870 0.0187 -
1.3103 2880 0.0186 -
1.3148 2890 0.0187 -
1.3194 2900 0.0187 0.0197
1.3239 2910 0.0185 -
1.3285 2920 0.0187 -
1.3330 2930 0.0187 -
1.3376 2940 0.018 -
1.3421 2950 0.0188 -
1.3467 2960 0.0184 -
1.3512 2970 0.0183 -
1.3558 2980 0.0185 -
1.3603 2990 0.0181 -
1.3649 3000 0.0186 0.0196
1.3694 3010 0.0184 -
1.3740 3020 0.0184 -
1.3785 3030 0.0187 -
1.3831 3040 0.0184 -
1.3876 3050 0.0185 -
1.3922 3060 0.0184 -
1.3967 3070 0.0188 -
1.4013 3080 0.0185 -
1.4058 3090 0.0185 -
1.4104 3100 0.0187 0.0196
1.4149 3110 0.0191 -
1.4195 3120 0.0185 -
1.4240 3130 0.0184 -
1.4286 3140 0.0187 -
1.4331 3150 0.0187 -
1.4377 3160 0.0182 -
1.4422 3170 0.0182 -
1.4468 3180 0.0184 -
1.4513 3190 0.0183 -
1.4559 3200 0.0182 0.0196
1.4604 3210 0.0183 -
1.4650 3220 0.0189 -
1.4695 3230 0.0188 -
1.4741 3240 0.0185 -
1.4786 3250 0.0184 -
1.4832 3260 0.0186 -
1.4877 3270 0.018 -
1.4923 3280 0.0183 -
1.4968 3290 0.019 -
1.5014 3300 0.018 0.0196
1.5059 3310 0.0181 -
1.5105 3320 0.0188 -
1.5150 3330 0.0182 -
1.5196 3340 0.0182 -
1.5241 3350 0.0184 -
1.5287 3360 0.0185 -
1.5332 3370 0.018 -
1.5378 3380 0.0179 -
1.5423 3390 0.0186 -
1.5469 3400 0.0178 0.0194
1.5514 3410 0.018 -
1.5560 3420 0.0183 -
1.5605 3430 0.0179 -
1.5651 3440 0.018 -
1.5696 3450 0.0181 -
1.5742 3460 0.0182 -
1.5787 3470 0.0186 -
1.5833 3480 0.0183 -
1.5878 3490 0.0186 -
1.5924 3500 0.0181 0.0193
1.5969 3510 0.0185 -
1.6015 3520 0.0178 -
1.6060 3530 0.0182 -
1.6106 3540 0.0186 -
1.6151 3550 0.0185 -
1.6197 3560 0.0183 -
1.6242 3570 0.0181 -
1.6288 3580 0.0183 -
1.6333 3590 0.0179 -
1.6379 3600 0.0187 0.0193
1.6424 3610 0.018 -
1.6470 3620 0.0182 -
1.6515 3630 0.0184 -
1.6561 3640 0.018 -
1.6606 3650 0.018 -
1.6652 3660 0.0181 -
1.6697 3670 0.0179 -
1.6742 3680 0.0181 -
1.6788 3690 0.0185 -
1.6833 3700 0.0179 0.0193
1.6879 3710 0.0186 -
1.6924 3720 0.0179 -
1.6970 3730 0.0183 -
1.7015 3740 0.018 -
1.7061 3750 0.0186 -
1.7106 3760 0.018 -
1.7152 3770 0.0189 -
1.7197 3780 0.018 -
1.7243 3790 0.0178 -
1.7288 3800 0.0179 0.0191
1.7334 3810 0.018 -
1.7379 3820 0.0178 -
1.7425 3830 0.0179 -
1.7470 3840 0.0179 -
1.7516 3850 0.0178 -
1.7561 3860 0.0174 -
1.7607 3870 0.0179 -
1.7652 3880 0.018 -
1.7698 3890 0.018 -
1.7743 3900 0.0179 0.0191
1.7789 3910 0.0177 -
1.7834 3920 0.0177 -
1.7880 3930 0.0178 -
1.7925 3940 0.0178 -
1.7971 3950 0.0183 -
1.8016 3960 0.0181 -
1.8062 3970 0.0175 -
1.8107 3980 0.0178 -
1.8153 3990 0.0179 -
1.8198 4000 0.0179 0.0189
1.8244 4010 0.0183 -
1.8289 4020 0.0182 -
1.8335 4030 0.0182 -
1.8380 4040 0.0181 -
1.8426 4050 0.0181 -
1.8471 4060 0.0182 -
1.8517 4070 0.0181 -
1.8562 4080 0.0172 -
1.8608 4090 0.0178 -
1.8653 4100 0.0179 0.0188
1.8699 4110 0.0181 -
1.8744 4120 0.0182 -
1.8790 4130 0.0177 -
1.8835 4140 0.0175 -
1.8881 4150 0.0178 -
1.8926 4160 0.018 -
1.8972 4170 0.0181 -
1.9017 4180 0.0176 -
1.9063 4190 0.0179 -
1.9108 4200 0.0178 0.0185
1.9154 4210 0.018 -
1.9199 4220 0.0181 -
1.9245 4230 0.0179 -
1.9290 4240 0.0179 -
1.9336 4250 0.0175 -
1.9381 4260 0.018 -
1.9427 4270 0.0187 -
1.9472 4280 0.0179 -
1.9518 4290 0.0174 -
1.9563 4300 0.0176 0.0186
1.9609 4310 0.0175 -
1.9654 4320 0.0175 -
1.9700 4330 0.018 -
1.9745 4340 0.0179 -
1.9791 4350 0.0177 -
1.9836 4360 0.0179 -
1.9882 4370 0.018 -
1.9927 4380 0.0179 -
1.9973 4390 0.0178 -
2.0018 4400 0.0175 0.0185
2.0064 4410 0.0167 -
2.0109 4420 0.0164 -
2.0155 4430 0.0165 -
2.0200 4440 0.016 -
2.0246 4450 0.0162 -
2.0291 4460 0.0165 -
2.0337 4470 0.0162 -
2.0382 4480 0.0161 -
2.0428 4490 0.0163 -
2.0473 4500 0.0164 0.0184
2.0519 4510 0.0162 -
2.0564 4520 0.0165 -
2.0610 4530 0.0162 -
2.0655 4540 0.0159 -
2.0701 4550 0.0161 -
2.0746 4560 0.0164 -
2.0792 4570 0.0162 -
2.0837 4580 0.0167 -
2.0883 4590 0.0161 -
2.0928 4600 0.0162 0.0183
2.0974 4610 0.0158 -
2.1019 4620 0.0163 -
2.1065 4630 0.0164 -
2.1110 4640 0.0161 -
2.1156 4650 0.016 -
2.1201 4660 0.0164 -
2.1247 4670 0.0164 -
2.1292 4680 0.016 -
2.1338 4690 0.0155 -
2.1383 4700 0.0159 0.0184
2.1429 4710 0.0165 -
2.1474 4720 0.0161 -
2.1520 4730 0.0159 -
2.1565 4740 0.0165 -
2.1611 4750 0.0161 -
2.1656 4760 0.0162 -
2.1702 4770 0.0165 -
2.1747 4780 0.0162 -
2.1793 4790 0.0164 -
2.1838 4800 0.0161 0.0183
2.1884 4810 0.0163 -
2.1929 4820 0.0161 -
2.1975 4830 0.0162 -
2.2020 4840 0.0164 -
2.2066 4850 0.0164 -
2.2111 4860 0.0165 -
2.2157 4870 0.0159 -
2.2202 4880 0.016 -
2.2247 4890 0.0161 -
2.2293 4900 0.0161 0.0181
2.2338 4910 0.0162 -
2.2384 4920 0.0163 -
2.2429 4930 0.0164 -
2.2475 4940 0.0162 -
2.2520 4950 0.0162 -
2.2566 4960 0.0164 -
2.2611 4970 0.0162 -
2.2657 4980 0.0165 -
2.2702 4990 0.0163 -
2.2748 5000 0.0161 0.0182
2.2793 5010 0.0163 -
2.2839 5020 0.0163 -
2.2884 5030 0.016 -
2.2930 5040 0.016 -
2.2975 5050 0.0161 -
2.3021 5060 0.0162 -
2.3066 5070 0.0161 -
2.3112 5080 0.0163 -
2.3157 5090 0.0158 -
2.3203 5100 0.0161 0.0180
2.3248 5110 0.0161 -
2.3294 5120 0.0161 -
2.3339 5130 0.0163 -
2.3385 5140 0.0163 -
2.3430 5150 0.0166 -
2.3476 5160 0.0164 -
2.3521 5170 0.0158 -
2.3567 5180 0.0163 -
2.3612 5190 0.0161 -
2.3658 5200 0.0161 0.0178
2.3703 5210 0.0164 -
2.3749 5220 0.0164 -
2.3794 5230 0.016 -
2.3840 5240 0.0159 -
2.3885 5250 0.016 -
2.3931 5260 0.0163 -
2.3976 5270 0.0161 -
2.4022 5280 0.0163 -
2.4067 5290 0.0158 -
2.4113 5300 0.0164 0.0182
2.4158 5310 0.0165 -
2.4204 5320 0.0162 -
2.4249 5330 0.0159 -
2.4295 5340 0.0162 -
2.4340 5350 0.0158 -
2.4386 5360 0.0165 -
2.4431 5370 0.016 -
2.4477 5380 0.0162 -
2.4522 5390 0.0163 -
2.4568 5400 0.0162 0.0180
2.4613 5410 0.0159 -
2.4659 5420 0.0164 -
2.4704 5430 0.0156 -
2.4750 5440 0.0168 -
2.4795 5450 0.0162 -
2.4841 5460 0.016 -
2.4886 5470 0.016 -
2.4932 5480 0.0164 -
2.4977 5490 0.0164 -
2.5023 5500 0.016 0.0180
2.5068 5510 0.0161 -
2.5114 5520 0.0159 -
2.5159 5530 0.016 -
2.5205 5540 0.0166 -
2.5250 5550 0.0163 -
2.5296 5560 0.0161 -
2.5341 5570 0.0162 -
2.5387 5580 0.0164 -
2.5432 5590 0.016 -
2.5478 5600 0.0163 0.0178
2.5523 5610 0.016 -
2.5569 5620 0.0163 -
2.5614 5630 0.0162 -
2.5660 5640 0.0162 -
2.5705 5650 0.0162 -
2.5751 5660 0.0159 -
2.5796 5670 0.0159 -
2.5842 5680 0.0159 -
2.5887 5690 0.0158 -
2.5933 5700 0.0159 0.0177
2.5978 5710 0.0161 -
2.6024 5720 0.0159 -
2.6069 5730 0.0158 -
2.6115 5740 0.0159 -
2.6160 5750 0.0159 -
2.6206 5760 0.0163 -
2.6251 5770 0.0159 -
2.6297 5780 0.016 -
2.6342 5790 0.0156 -
2.6388 5800 0.0161 0.0175
2.6433 5810 0.0164 -
2.6479 5820 0.016 -
2.6524 5830 0.0162 -
2.6570 5840 0.016 -
2.6615 5850 0.0165 -
2.6661 5860 0.016 -
2.6706 5870 0.016 -
2.6752 5880 0.0162 -
2.6797 5890 0.0165 -
2.6843 5900 0.0159 0.0176
2.6888 5910 0.0156 -
2.6934 5920 0.0162 -
2.6979 5930 0.0164 -
2.7025 5940 0.0163 -
2.7070 5950 0.0159 -
2.7116 5960 0.0158 -
2.7161 5970 0.0161 -
2.7207 5980 0.0158 -
2.7252 5990 0.0162 -
2.7298 6000 0.016 0.0174
2.7343 6010 0.0161 -
2.7389 6020 0.0159 -
2.7434 6030 0.0161 -
2.7480 6040 0.016 -
2.7525 6050 0.0154 -
2.7571 6060 0.0159 -
2.7616 6070 0.0162 -
2.7662 6080 0.0157 -
2.7707 6090 0.0158 -
2.7753 6100 0.0159 0.0176
2.7798 6110 0.0166 -
2.7843 6120 0.0161 -
2.7889 6130 0.0157 -
2.7934 6140 0.0156 -
2.7980 6150 0.0156 -
2.8025 6160 0.016 -
2.8071 6170 0.016 -
2.8116 6180 0.0156 -
2.8162 6190 0.0157 -
2.8207 6200 0.016 0.0174
2.8253 6210 0.0159 -
2.8298 6220 0.0158 -
2.8344 6230 0.0158 -
2.8389 6240 0.0163 -
2.8435 6250 0.0156 -
2.8480 6260 0.0157 -
2.8526 6270 0.016 -
2.8571 6280 0.0156 -
2.8617 6290 0.0154 -
2.8662 6300 0.016 0.0173
2.8708 6310 0.016 -
2.8753 6320 0.0158 -
2.8799 6330 0.0158 -
2.8844 6340 0.0156 -
2.8890 6350 0.0161 -
2.8935 6360 0.0158 -
2.8981 6370 0.016 -
2.9026 6380 0.0157 -
2.9072 6390 0.0158 -
2.9117 6400 0.016 0.0174
2.9163 6410 0.0157 -
2.9208 6420 0.0154 -
2.9254 6430 0.0157 -
2.9299 6440 0.0156 -
2.9345 6450 0.0157 -
2.9390 6460 0.0162 -
2.9436 6470 0.0156 -
2.9481 6480 0.0159 -
2.9527 6490 0.0155 -
2.9572 6500 0.0159 0.0172
2.9618 6510 0.0157 -
2.9663 6520 0.0158 -
2.9709 6530 0.0157 -
2.9754 6540 0.0157 -
2.9800 6550 0.0156 -
2.9845 6560 0.0153 -
2.9891 6570 0.0159 -
2.9936 6580 0.0156 -
2.9982 6590 0.0157 -
3.0027 6600 0.0149 0.0173
3.0073 6610 0.0144 -
3.0118 6620 0.0143 -
3.0164 6630 0.0143 -
3.0209 6640 0.0139 -
3.0255 6650 0.0145 -
3.0300 6660 0.0145 -
3.0346 6670 0.0142 -
3.0391 6680 0.0141 -
3.0437 6690 0.0139 -
3.0482 6700 0.0143 0.0173
3.0528 6710 0.0144 -
3.0573 6720 0.0145 -
3.0619 6730 0.014 -
3.0664 6740 0.0144 -
3.0710 6750 0.0141 -
3.0755 6760 0.0141 -
3.0801 6770 0.0145 -
3.0846 6780 0.014 -
3.0892 6790 0.0144 -
3.0937 6800 0.014 0.0174
3.0983 6810 0.0145 -
3.1028 6820 0.0141 -
3.1074 6830 0.0142 -
3.1119 6840 0.0138 -
3.1165 6850 0.0142 -
3.1210 6860 0.0143 -
3.1256 6870 0.0144 -
3.1301 6880 0.0143 -
3.1347 6890 0.0145 -
3.1392 6900 0.0144 0.0171
3.1438 6910 0.014 -
3.1483 6920 0.0142 -
3.1529 6930 0.0144 -
3.1574 6940 0.0141 -
3.1620 6950 0.0142 -
3.1665 6960 0.0145 -
3.1711 6970 0.0139 -
3.1756 6980 0.0145 -
3.1802 6990 0.0145 -
3.1847 7000 0.0137 0.0170
3.1893 7010 0.0144 -
3.1938 7020 0.0146 -
3.1984 7030 0.0139 -
3.2029 7040 0.014 -
3.2075 7050 0.0147 -
3.2120 7060 0.0141 -
3.2166 7070 0.014 -
3.2211 7080 0.0146 -
3.2257 7090 0.0143 -
3.2302 7100 0.0145 0.0169
3.2348 7110 0.0145 -
3.2393 7120 0.0141 -
3.2439 7130 0.014 -
3.2484 7140 0.0145 -
3.2530 7150 0.014 -
3.2575 7160 0.0143 -
3.2621 7170 0.0145 -
3.2666 7180 0.0143 -
3.2712 7190 0.0142 -
3.2757 7200 0.0144 0.0168
3.2803 7210 0.0141 -
3.2848 7220 0.014 -
3.2894 7230 0.0142 -
3.2939 7240 0.0144 -
3.2985 7250 0.0138 -
3.3030 7260 0.0143 -
3.3076 7270 0.0141 -
3.3121 7280 0.014 -
3.3167 7290 0.0136 -
3.3212 7300 0.0144 0.0167
3.3258 7310 0.014 -
3.3303 7320 0.014 -
3.3348 7330 0.0143 -
3.3394 7340 0.0142 -
3.3439 7350 0.0141 -
3.3485 7360 0.0142 -
3.3530 7370 0.0142 -
3.3576 7380 0.0142 -
3.3621 7390 0.0142 -
3.3667 7400 0.0143 0.0168
3.3712 7410 0.0142 -
3.3758 7420 0.0141 -
3.3803 7430 0.0142 -
3.3849 7440 0.0141 -
3.3894 7450 0.0142 -
3.3940 7460 0.0142 -
3.3985 7470 0.0143 -
3.4031 7480 0.0139 -
3.4076 7490 0.0141 -
3.4122 7500 0.0142 0.0166
3.4167 7510 0.014 -
3.4213 7520 0.0143 -
3.4258 7530 0.0139 -
3.4304 7540 0.0141 -
3.4349 7550 0.0145 -
3.4395 7560 0.0141 -
3.4440 7570 0.0144 -
3.4486 7580 0.0141 -
3.4531 7590 0.0139 -
3.4577 7600 0.0139 0.0166
3.4622 7610 0.014 -
3.4668 7620 0.0139 -
3.4713 7630 0.0144 -
3.4759 7640 0.0141 -
3.4804 7650 0.0145 -
3.4850 7660 0.0142 -
3.4895 7670 0.0142 -
3.4941 7680 0.0141 -
3.4986 7690 0.014 -
3.5032 7700 0.0138 0.0166
3.5077 7710 0.014 -
3.5123 7720 0.0147 -
3.5168 7730 0.0143 -
3.5214 7740 0.0136 -
3.5259 7750 0.0141 -
3.5305 7760 0.0144 -
3.5350 7770 0.0143 -
3.5396 7780 0.0145 -
3.5441 7790 0.0141 -
3.5487 7800 0.0138 0.0164
3.5532 7810 0.0145 -
3.5578 7820 0.0144 -
3.5623 7830 0.0144 -
3.5669 7840 0.0142 -
3.5714 7850 0.0141 -
3.5760 7860 0.0138 -
3.5805 7870 0.0141 -
3.5851 7880 0.0137 -
3.5896 7890 0.0143 -
3.5942 7900 0.0139 0.0165
3.5987 7910 0.0141 -
3.6033 7920 0.0143 -
3.6078 7930 0.0141 -
3.6124 7940 0.0144 -
3.6169 7950 0.0141 -
3.6215 7960 0.0144 -
3.6260 7970 0.0137 -
3.6306 7980 0.0139 -
3.6351 7990 0.014 -
3.6397 8000 0.0142 0.0164
3.6442 8010 0.0142 -
3.6488 8020 0.0138 -
3.6533 8030 0.0138 -
3.6579 8040 0.0136 -
3.6624 8050 0.0138 -
3.6670 8060 0.0143 -
3.6715 8070 0.0142 -
3.6761 8080 0.014 -
3.6806 8090 0.0141 -
3.6852 8100 0.0139 0.0164
3.6897 8110 0.014 -
3.6943 8120 0.0146 -
3.6988 8130 0.0145 -
3.7034 8140 0.0138 -
3.7079 8150 0.0139 -
3.7125 8160 0.0148 -
3.7170 8170 0.0143 -
3.7216 8180 0.014 -
3.7261 8190 0.0138 -
3.7307 8200 0.0137 0.0163
3.7352 8210 0.014 -
3.7398 8220 0.0144 -
3.7443 8230 0.0141 -
3.7489 8240 0.0144 -
3.7534 8250 0.0144 -
3.7580 8260 0.0141 -
3.7625 8270 0.0138 -
3.7671 8280 0.014 -
3.7716 8290 0.0138 -
3.7762 8300 0.0141 0.0161
3.7807 8310 0.0141 -
3.7853 8320 0.0141 -
3.7898 8330 0.0141 -
3.7944 8340 0.0143 -
3.7989 8350 0.0137 -
3.8035 8360 0.014 -
3.8080 8370 0.0142 -
3.8126 8380 0.0146 -
3.8171 8390 0.0139 -
3.8217 8400 0.0139 0.0160
3.8262 8410 0.0144 -
3.8308 8420 0.014 -
3.8353 8430 0.0141 -
3.8399 8440 0.0144 -
3.8444 8450 0.014 -
3.8490 8460 0.0144 -
3.8535 8470 0.0139 -
3.8581 8480 0.014 -
3.8626 8490 0.0138 -
3.8672 8500 0.0136 0.0160
3.8717 8510 0.014 -
3.8763 8520 0.0144 -
3.8808 8530 0.0139 -
3.8854 8540 0.0137 -
3.8899 8550 0.0139 -
3.8944 8560 0.0142 -
3.8990 8570 0.0139 -
3.9035 8580 0.0137 -
3.9081 8590 0.0137 -
3.9126 8600 0.0139 0.0160
3.9172 8610 0.0138 -
3.9217 8620 0.0135 -
3.9263 8630 0.014 -
3.9308 8640 0.0139 -
3.9354 8650 0.0139 -
3.9399 8660 0.0137 -
3.9445 8670 0.0141 -
3.9490 8680 0.014 -
3.9536 8690 0.014 -
3.9581 8700 0.0144 0.0161
3.9627 8710 0.0141 -
3.9672 8720 0.0142 -
3.9718 8730 0.014 -
3.9763 8740 0.0141 -
3.9809 8750 0.0138 -
3.9854 8760 0.0142 -
3.9900 8770 0.0138 -
3.9945 8780 0.0141 -
3.9991 8790 0.0137 -
4.0036 8800 0.0129 0.0162
4.0082 8810 0.0129 -
4.0127 8820 0.0127 -
4.0173 8830 0.0129 -
4.0218 8840 0.0129 -
4.0264 8850 0.0124 -
4.0309 8860 0.0128 -
4.0355 8870 0.0124 -
4.0400 8880 0.0128 -
4.0446 8890 0.0127 -
4.0491 8900 0.0127 0.0160
4.0537 8910 0.0128 -
4.0582 8920 0.013 -
4.0628 8930 0.0129 -
4.0673 8940 0.0123 -
4.0719 8950 0.0129 -
4.0764 8960 0.0125 -
4.0810 8970 0.0126 -
4.0855 8980 0.0127 -
4.0901 8990 0.0129 -
4.0946 9000 0.0134 0.0159
4.0992 9010 0.0124 -
4.1037 9020 0.0123 -
4.1083 9030 0.0127 -
4.1128 9040 0.0128 -
4.1174 9050 0.0127 -
4.1219 9060 0.0123 -
4.1265 9070 0.0127 -
4.1310 9080 0.0127 -
4.1356 9090 0.0128 -
4.1401 9100 0.0128 0.0161
4.1447 9110 0.0126 -
4.1492 9120 0.0127 -
4.1538 9130 0.0127 -
4.1583 9140 0.0128 -
4.1629 9150 0.0126 -
4.1674 9160 0.0127 -
4.1720 9170 0.0129 -
4.1765 9180 0.0128 -
4.1811 9190 0.0131 -
4.1856 9200 0.0129 0.0161
4.1902 9210 0.0123 -
4.1947 9220 0.0128 -
4.1993 9230 0.0126 -
4.2038 9240 0.0127 -
4.2084 9250 0.0127 -
4.2129 9260 0.0127 -
4.2175 9270 0.0123 -
4.2220 9280 0.013 -
4.2266 9290 0.0125 -
4.2311 9300 0.0127 0.0160
4.2357 9310 0.0126 -
4.2402 9320 0.0125 -
4.2448 9330 0.0129 -
4.2493 9340 0.013 -
4.2539 9350 0.0127 -
4.2584 9360 0.0126 -
4.2630 9370 0.013 -
4.2675 9380 0.0129 -
4.2721 9390 0.0129 -
4.2766 9400 0.0128 0.0160
4.2812 9410 0.0125 -
4.2857 9420 0.0126 -
4.2903 9430 0.0127 -
4.2948 9440 0.0123 -
4.2994 9450 0.0123 -
4.3039 9460 0.0127 -
4.3085 9470 0.013 -
4.3130 9480 0.0129 -
4.3176 9490 0.0124 -
4.3221 9500 0.0125 0.0158
4.3267 9510 0.0124 -
4.3312 9520 0.0126 -
4.3358 9530 0.0125 -
4.3403 9540 0.0126 -
4.3449 9550 0.0128 -
4.3494 9560 0.0128 -
4.3540 9570 0.0123 -
4.3585 9580 0.0125 -
4.3631 9590 0.0128 -
4.3676 9600 0.0125 0.0158
4.3722 9610 0.0129 -
4.3767 9620 0.0126 -
4.3813 9630 0.0128 -
4.3858 9640 0.0127 -
4.3904 9650 0.0125 -
4.3949 9660 0.0127 -
4.3995 9670 0.0123 -
4.4040 9680 0.0125 -
4.4086 9690 0.0125 -
4.4131 9700 0.0126 0.0157
4.4177 9710 0.0124 -
4.4222 9720 0.0128 -
4.4268 9730 0.0125 -
4.4313 9740 0.0124 -
4.4359 9750 0.0126 -
4.4404 9760 0.0129 -
4.4449 9770 0.0124 -
4.4495 9780 0.0126 -
4.4540 9790 0.0123 -
4.4586 9800 0.0124 0.0158
4.4631 9810 0.0125 -
4.4677 9820 0.0122 -
4.4722 9830 0.0127 -
4.4768 9840 0.0129 -
4.4813 9850 0.0126 -
4.4859 9860 0.0131 -
4.4904 9870 0.0127 -
4.4950 9880 0.013 -
4.4995 9890 0.0128 -
4.5041 9900 0.0125 0.0156
4.5086 9910 0.0127 -
4.5132 9920 0.0124 -
4.5177 9930 0.0125 -
4.5223 9940 0.0123 -
4.5268 9950 0.0127 -
4.5314 9960 0.0126 -
4.5359 9970 0.0126 -
4.5405 9980 0.0123 -
4.5450 9990 0.0129 -
4.5496 10000 0.0128 0.0157
4.5541 10010 0.0129 -
4.5587 10020 0.0126 -
4.5632 10030 0.0127 -
4.5678 10040 0.0126 -
4.5723 10050 0.0125 -
4.5769 10060 0.0123 -
4.5814 10070 0.0124 -
4.5860 10080 0.0128 -
4.5905 10090 0.0124 -
4.5951 10100 0.0126 0.0156
4.5996 10110 0.0126 -
4.6042 10120 0.0125 -
4.6087 10130 0.0126 -
4.6133 10140 0.0129 -
4.6178 10150 0.0126 -
4.6224 10160 0.0123 -
4.6269 10170 0.0129 -
4.6315 10180 0.0128 -
4.6360 10190 0.0123 -
4.6406 10200 0.0129 0.0155
4.6451 10210 0.0127 -
4.6497 10220 0.0122 -
4.6542 10230 0.0126 -
4.6588 10240 0.0128 -
4.6633 10250 0.0126 -
4.6679 10260 0.0125 -
4.6724 10270 0.0128 -
4.6770 10280 0.0125 -
4.6815 10290 0.0127 -
4.6861 10300 0.0125 0.0155
4.6906 10310 0.0127 -
4.6952 10320 0.0126 -
4.6997 10330 0.0129 -
4.7043 10340 0.0126 -
4.7088 10350 0.0124 -
4.7134 10360 0.0126 -
4.7179 10370 0.0127 -
4.7225 10380 0.0126 -
4.7270 10390 0.0125 -
4.7316 10400 0.0127 0.0154
4.7361 10410 0.0128 -
4.7407 10420 0.0127 -
4.7452 10430 0.0123 -
4.7498 10440 0.0125 -
4.7543 10450 0.0126 -
4.7589 10460 0.0124 -
4.7634 10470 0.0124 -
4.7680 10480 0.012 -
4.7725 10490 0.0128 -
4.7771 10500 0.0129 0.0154
4.7816 10510 0.0129 -
4.7862 10520 0.0125 -
4.7907 10530 0.0123 -
4.7953 10540 0.0126 -
4.7998 10550 0.0123 -
4.8044 10560 0.0127 -
4.8089 10570 0.0127 -
4.8135 10580 0.013 -
4.8180 10590 0.0123 -
4.8226 10600 0.0124 0.0153
4.8271 10610 0.0127 -
4.8317 10620 0.0123 -
4.8362 10630 0.0127 -
4.8408 10640 0.0125 -
4.8453 10650 0.0127 -
4.8499 10660 0.0128 -
4.8544 10670 0.0129 -
4.8590 10680 0.0125 -
4.8635 10690 0.0125 -
4.8681 10700 0.0126 0.0152
4.8726 10710 0.0127 -
4.8772 10720 0.0128 -
4.8817 10730 0.0127 -
4.8863 10740 0.013 -
4.8908 10750 0.0125 -
4.8954 10760 0.0123 -
4.8999 10770 0.0124 -
4.9045 10780 0.0127 -
4.9090 10790 0.0122 -
4.9136 10800 0.0126 0.0153
4.9181 10810 0.0128 -
4.9227 10820 0.0126 -
4.9272 10830 0.0127 -
4.9318 10840 0.0124 -
4.9363 10850 0.0121 -
4.9409 10860 0.0122 -
4.9454 10870 0.0129 -
4.9500 10880 0.0127 -
4.9545 10890 0.0126 -
4.9591 10900 0.0122 0.0152
4.9636 10910 0.0126 -
4.9682 10920 0.0126 -
4.9727 10930 0.0129 -
4.9773 10940 0.0127 -
4.9818 10950 0.0126 -
4.9864 10960 0.0129 -
4.9909 10970 0.0126 -
4.9955 10980 0.0127 -
5.0 10990 0.0123 -
5.0045 11000 0.0115 0.0153
5.0091 11010 0.0116 -
5.0136 11020 0.0117 -
5.0182 11030 0.0115 -
5.0227 11040 0.0108 -
5.0273 11050 0.0117 -
5.0318 11060 0.0111 -
5.0364 11070 0.0114 -
5.0409 11080 0.0115 -
5.0455 11090 0.011 -
5.0500 11100 0.0116 0.0151
5.0546 11110 0.0113 -
5.0591 11120 0.0114 -
5.0637 11130 0.0114 -
5.0682 11140 0.0113 -
5.0728 11150 0.0112 -
5.0773 11160 0.0113 -
5.0819 11170 0.0112 -
5.0864 11180 0.0113 -
5.0910 11190 0.0115 -
5.0955 11200 0.0114 0.0150
5.1001 11210 0.0113 -
5.1046 11220 0.0114 -
5.1092 11230 0.0113 -
5.1137 11240 0.0113 -
5.1183 11250 0.0114 -
5.1228 11260 0.0116 -
5.1274 11270 0.0117 -
5.1319 11280 0.0113 -
5.1365 11290 0.0113 -
5.1410 11300 0.0114 0.0151
5.1456 11310 0.0116 -
5.1501 11320 0.0118 -
5.1547 11330 0.0114 -
5.1592 11340 0.0114 -
5.1638 11350 0.0114 -
5.1683 11360 0.0115 -
5.1729 11370 0.0117 -
5.1774 11380 0.0116 -
5.1820 11390 0.0119 -
5.1865 11400 0.0118 0.0150
5.1911 11410 0.0109 -
5.1956 11420 0.0118 -
5.2002 11430 0.0115 -
5.2047 11440 0.0111 -
5.2093 11450 0.0116 -
5.2138 11460 0.0111 -
5.2184 11470 0.0116 -
5.2229 11480 0.0114 -
5.2275 11490 0.0114 -
5.2320 11500 0.0115 0.0150
5.2366 11510 0.0121 -
5.2411 11520 0.0114 -
5.2457 11530 0.0116 -
5.2502 11540 0.0111 -
5.2548 11550 0.0116 -
5.2593 11560 0.0113 -
5.2639 11570 0.0116 -
5.2684 11580 0.0112 -
5.2730 11590 0.0114 -
5.2775 11600 0.0117 0.0149
5.2821 11610 0.0114 -
5.2866 11620 0.0112 -
5.2912 11630 0.0116 -
5.2957 11640 0.0116 -
5.3003 11650 0.0112 -
5.3048 11660 0.0115 -
5.3094 11670 0.0113 -
5.3139 11680 0.0111 -
5.3185 11690 0.0115 -
5.3230 11700 0.0113 0.0150
5.3276 11710 0.0115 -
5.3321 11720 0.0117 -
5.3367 11730 0.0113 -
5.3412 11740 0.0113 -
5.3458 11750 0.0117 -
5.3503 11760 0.0118 -
5.3549 11770 0.0112 -
5.3594 11780 0.0114 -
5.3640 11790 0.0116 -
5.3685 11800 0.0114 0.0149
5.3731 11810 0.0108 -
5.3776 11820 0.0114 -
5.3822 11830 0.0114 -
5.3867 11840 0.0113 -
5.3913 11850 0.0112 -
5.3958 11860 0.0116 -
5.4004 11870 0.0114 -
5.4049 11880 0.0117 -
5.4095 11890 0.0116 -
5.4140 11900 0.0114 0.0148
5.4186 11910 0.0114 -
5.4231 11920 0.0113 -
5.4277 11930 0.0114 -
5.4322 11940 0.0116 -
5.4368 11950 0.0115 -
5.4413 11960 0.0113 -
5.4459 11970 0.0114 -
5.4504 11980 0.0112 -
5.4550 11990 0.0113 -
5.4595 12000 0.0115 0.0149
5.4641 12010 0.0113 -
5.4686 12020 0.012 -
5.4732 12030 0.0112 -
5.4777 12040 0.0113 -
5.4823 12050 0.0118 -
5.4868 12060 0.0116 -
5.4914 12070 0.0112 -
5.4959 12080 0.0112 -
5.5005 12090 0.0115 -
5.5050 12100 0.0115 0.0149
5.5096 12110 0.0114 -
5.5141 12120 0.0111 -
5.5187 12130 0.0113 -
5.5232 12140 0.0111 -
5.5278 12150 0.0115 -
5.5323 12160 0.011 -
5.5369 12170 0.0111 -
5.5414 12180 0.0113 -
5.5460 12190 0.0115 -
5.5505 12200 0.0116 0.0148
5.5551 12210 0.0116 -
5.5596 12220 0.0113 -
5.5641 12230 0.0114 -
5.5687 12240 0.0116 -
5.5732 12250 0.0112 -
5.5778 12260 0.0116 -
5.5823 12270 0.0113 -
5.5869 12280 0.0115 -
5.5914 12290 0.0118 -
5.5960 12300 0.0114 0.0148
5.6005 12310 0.0115 -
5.6051 12320 0.0113 -
5.6096 12330 0.0113 -
5.6142 12340 0.0115 -
5.6187 12350 0.0117 -
5.6233 12360 0.0116 -
5.6278 12370 0.0114 -
5.6324 12380 0.0116 -
5.6369 12390 0.0109 -
5.6415 12400 0.0112 0.0149
5.6460 12410 0.0113 -
5.6506 12420 0.0113 -
5.6551 12430 0.0113 -
5.6597 12440 0.0114 -
5.6642 12450 0.0113 -
5.6688 12460 0.0113 -
5.6733 12470 0.0113 -
5.6779 12480 0.011 -
5.6824 12490 0.0116 -
5.6870 12500 0.0113 0.0148
5.6915 12510 0.0115 -
5.6961 12520 0.0112 -
5.7006 12530 0.0114 -
5.7052 12540 0.0111 -
5.7097 12550 0.0113 -
5.7143 12560 0.0115 -
5.7188 12570 0.0118 -
5.7234 12580 0.0113 -
5.7279 12590 0.0113 -
5.7325 12600 0.0115 0.0147
5.7370 12610 0.0116 -
5.7416 12620 0.0113 -
5.7461 12630 0.0114 -
5.7507 12640 0.0118 -
5.7552 12650 0.0116 -
5.7598 12660 0.0113 -
5.7643 12670 0.0118 -
5.7689 12680 0.0112 -
5.7734 12690 0.0118 -
5.7780 12700 0.0117 0.0146
5.7825 12710 0.0114 -
5.7871 12720 0.0115 -
5.7916 12730 0.0113 -
5.7962 12740 0.0111 -
5.8007 12750 0.0114 -
5.8053 12760 0.0117 -
5.8098 12770 0.0117 -
5.8144 12780 0.0111 -
5.8189 12790 0.0115 -
5.8235 12800 0.0114 0.0145
5.8280 12810 0.0117 -
5.8326 12820 0.0114 -
5.8371 12830 0.0116 -
5.8417 12840 0.0117 -
5.8462 12850 0.0109 -
5.8508 12860 0.0116 -
5.8553 12870 0.0113 -
5.8599 12880 0.0112 -
5.8644 12890 0.0112 -
5.8690 12900 0.0116 0.0144
5.8735 12910 0.0114 -
5.8781 12920 0.0115 -
5.8826 12930 0.0112 -
5.8872 12940 0.0114 -
5.8917 12950 0.0114 -
5.8963 12960 0.0117 -
5.9008 12970 0.0118 -
5.9054 12980 0.0113 -
5.9099 12990 0.0113 -
5.9145 13000 0.0113 0.0144
5.9190 13010 0.0115 -
5.9236 13020 0.0112 -
5.9281 13030 0.0114 -
5.9327 13040 0.0113 -
5.9372 13050 0.0114 -
5.9418 13060 0.0115 -
5.9463 13070 0.0112 -
5.9509 13080 0.0107 -
5.9554 13090 0.0114 -
5.9600 13100 0.0116 0.0145
5.9645 13110 0.0114 -
5.9691 13120 0.0111 -
5.9736 13130 0.0112 -
5.9782 13140 0.0112 -
5.9827 13150 0.0115 -
5.9873 13160 0.0116 -
5.9918 13170 0.0117 -
5.9964 13180 0.0114 -
6.0009 13190 0.0109 -
6.0055 13200 0.0104 0.0144
6.0100 13210 0.0102 -
6.0146 13220 0.0106 -
6.0191 13230 0.0105 -
6.0237 13240 0.0106 -
6.0282 13250 0.0103 -
6.0328 13260 0.0103 -
6.0373 13270 0.0103 -
6.0419 13280 0.0106 -
6.0464 13290 0.0105 -
6.0510 13300 0.0104 0.0145
6.0555 13310 0.0106 -
6.0601 13320 0.0103 -
6.0646 13330 0.0105 -
6.0692 13340 0.0102 -
6.0737 13350 0.0101 -
6.0783 13360 0.0104 -
6.0828 13370 0.0105 -
6.0874 13380 0.0103 -
6.0919 13390 0.01 -
6.0965 13400 0.0099 0.0146
6.1010 13410 0.0102 -
6.1056 13420 0.0106 -
6.1101 13430 0.0104 -
6.1146 13440 0.0108 -
6.1192 13450 0.0104 -
6.1237 13460 0.0104 -
6.1283 13470 0.0103 -
6.1328 13480 0.0107 -
6.1374 13490 0.0105 -
6.1419 13500 0.0102 0.0143
6.1465 13510 0.0102 -
6.1510 13520 0.011 -
6.1556 13530 0.0104 -
6.1601 13540 0.0103 -
6.1647 13550 0.0103 -
6.1692 13560 0.01 -
6.1738 13570 0.0103 -
6.1783 13580 0.0105 -
6.1829 13590 0.0105 -
6.1874 13600 0.0104 0.0145
6.1920 13610 0.0106 -
6.1965 13620 0.0103 -
6.2011 13630 0.0103 -
6.2056 13640 0.0104 -
6.2102 13650 0.0103 -
6.2147 13660 0.0107 -
6.2193 13670 0.0104 -
6.2238 13680 0.0108 -
6.2284 13690 0.0104 -
6.2329 13700 0.0108 0.0143
6.2375 13710 0.0106 -
6.2420 13720 0.0103 -
6.2466 13730 0.0106 -
6.2511 13740 0.0104 -
6.2557 13750 0.0103 -
6.2602 13760 0.0105 -
6.2648 13770 0.0104 -
6.2693 13780 0.0104 -
6.2739 13790 0.0105 -
6.2784 13800 0.0104 0.0143
6.2830 13810 0.0106 -
6.2875 13820 0.0104 -
6.2921 13830 0.0104 -
6.2966 13840 0.0104 -
6.3012 13850 0.0106 -
6.3057 13860 0.0109 -
6.3103 13870 0.0105 -
6.3148 13880 0.0107 -
6.3194 13890 0.0102 -
6.3239 13900 0.0105 0.0143
6.3285 13910 0.0105 -
6.3330 13920 0.0103 -
6.3376 13930 0.0105 -
6.3421 13940 0.0104 -
6.3467 13950 0.0108 -
6.3512 13960 0.0103 -
6.3558 13970 0.0101 -
6.3603 13980 0.0107 -
6.3649 13990 0.0102 -
6.3694 14000 0.0106 0.0143
6.3740 14010 0.0105 -
6.3785 14020 0.0106 -
6.3831 14030 0.0101 -
6.3876 14040 0.0107 -
6.3922 14050 0.0101 -
6.3967 14060 0.0103 -
6.4013 14070 0.0107 -
6.4058 14080 0.0106 -
6.4104 14090 0.0106 -
6.4149 14100 0.0105 0.0143
6.4195 14110 0.0104 -
6.4240 14120 0.0106 -
6.4286 14130 0.0104 -
6.4331 14140 0.0105 -
6.4377 14150 0.0104 -
6.4422 14160 0.0108 -
6.4468 14170 0.0107 -
6.4513 14180 0.0107 -
6.4559 14190 0.0106 -
6.4604 14200 0.0105 0.0142
6.4650 14210 0.0105 -
6.4695 14220 0.0104 -
6.4741 14230 0.0102 -
6.4786 14240 0.0108 -
6.4832 14250 0.0107 -
6.4877 14260 0.0105 -
6.4923 14270 0.0107 -
6.4968 14280 0.0105 -
6.5014 14290 0.0106 -
6.5059 14300 0.0104 0.0143
6.5105 14310 0.0105 -
6.5150 14320 0.0103 -
6.5196 14330 0.0105 -
6.5241 14340 0.0103 -
6.5287 14350 0.0104 -
6.5332 14360 0.0103 -
6.5378 14370 0.0104 -
6.5423 14380 0.0109 -
6.5469 14390 0.0105 -
6.5514 14400 0.0103 0.0142
6.5560 14410 0.0104 -
6.5605 14420 0.0106 -
6.5651 14430 0.0104 -
6.5696 14440 0.0106 -
6.5742 14450 0.0105 -
6.5787 14460 0.0108 -
6.5833 14470 0.0105 -
6.5878 14480 0.0104 -
6.5924 14490 0.0104 -
6.5969 14500 0.0103 0.0141
6.6015 14510 0.0104 -
6.6060 14520 0.0105 -
6.6106 14530 0.0104 -
6.6151 14540 0.0107 -
6.6197 14550 0.0103 -
6.6242 14560 0.0105 -
6.6288 14570 0.0106 -
6.6333 14580 0.0104 -
6.6379 14590 0.0106 -
6.6424 14600 0.0104 0.0140
6.6470 14610 0.0106 -
6.6515 14620 0.0103 -
6.6561 14630 0.0103 -
6.6606 14640 0.0105 -
6.6652 14650 0.0103 -
6.6697 14660 0.0108 -
6.6742 14670 0.0105 -
6.6788 14680 0.0104 -
6.6833 14690 0.0104 -
6.6879 14700 0.0106 0.0141
6.6924 14710 0.0106 -
6.6970 14720 0.0106 -
6.7015 14730 0.0108 -
6.7061 14740 0.0106 -
6.7106 14750 0.0103 -
6.7152 14760 0.0106 -
6.7197 14770 0.0107 -
6.7243 14780 0.0101 -
6.7288 14790 0.0103 -
6.7334 14800 0.0102 0.0142
6.7379 14810 0.0107 -
6.7425 14820 0.0103 -
6.7470 14830 0.0103 -
6.7516 14840 0.0105 -
6.7561 14850 0.0103 -
6.7607 14860 0.0102 -
6.7652 14870 0.0106 -
6.7698 14880 0.0105 -
6.7743 14890 0.0101 -
6.7789 14900 0.0104 0.0140
6.7834 14910 0.0101 -
6.7880 14920 0.0103 -
6.7925 14930 0.0106 -
6.7971 14940 0.0105 -
6.8016 14950 0.0106 -
6.8062 14960 0.0106 -
6.8107 14970 0.0101 -
6.8153 14980 0.0105 -
6.8198 14990 0.0104 -
6.8244 15000 0.0101 0.0140
6.8289 15010 0.0103 -
6.8335 15020 0.0102 -
6.8380 15030 0.0104 -
6.8426 15040 0.0103 -
6.8471 15050 0.0102 -
6.8517 15060 0.0107 -
6.8562 15070 0.0105 -
6.8608 15080 0.0104 -
6.8653 15090 0.0106 -
6.8699 15100 0.0101 0.0139
6.8744 15110 0.0106 -
6.8790 15120 0.0105 -
6.8835 15130 0.0104 -
6.8881 15140 0.0105 -
6.8926 15150 0.0103 -
6.8972 15160 0.0105 -
6.9017 15170 0.0104 -
6.9063 15180 0.0103 -
6.9108 15190 0.0102 -
6.9154 15200 0.0107 0.0139
6.9199 15210 0.0106 -
6.9245 15220 0.0104 -
6.9290 15230 0.0106 -
6.9336 15240 0.0104 -
6.9381 15250 0.0104 -
6.9427 15260 0.0107 -
6.9472 15270 0.0107 -
6.9518 15280 0.0105 -
6.9563 15290 0.0105 -
6.9609 15300 0.01 0.0141
6.9654 15310 0.0104 -
6.9700 15320 0.0106 -
6.9745 15330 0.0104 -
6.9791 15340 0.0105 -
6.9836 15350 0.0105 -
6.9882 15360 0.0103 -
6.9927 15370 0.0101 -
6.9973 15380 0.0107 -
7.0018 15390 0.01 -
7.0064 15400 0.0098 0.0140
7.0109 15410 0.0096 -
7.0155 15420 0.0096 -
7.0200 15430 0.0097 -
7.0246 15440 0.0095 -
7.0291 15450 0.0095 -
7.0337 15460 0.0094 -
7.0382 15470 0.0095 -
7.0428 15480 0.0097 -
7.0473 15490 0.0096 -
7.0519 15500 0.0096 0.0141
7.0564 15510 0.0094 -
7.0610 15520 0.0096 -
7.0655 15530 0.01 -
7.0701 15540 0.0096 -
7.0746 15550 0.0098 -
7.0792 15560 0.0095 -
7.0837 15570 0.0095 -
7.0883 15580 0.0095 -
7.0928 15590 0.0095 -
7.0974 15600 0.0095 0.0140
7.1019 15610 0.0098 -
7.1065 15620 0.0096 -
7.1110 15630 0.0099 -
7.1156 15640 0.0094 -
7.1201 15650 0.0098 -
7.1247 15660 0.0096 -
7.1292 15670 0.0093 -
7.1338 15680 0.0092 -
7.1383 15690 0.0097 -
7.1429 15700 0.0093 0.0140
7.1474 15710 0.0095 -
7.1520 15720 0.0096 -
7.1565 15730 0.0097 -
7.1611 15740 0.0098 -
7.1656 15750 0.0097 -
7.1702 15760 0.0097 -
7.1747 15770 0.0098 -
7.1793 15780 0.0097 -
7.1838 15790 0.0094 -
7.1884 15800 0.0099 0.0140
7.1929 15810 0.0099 -
7.1975 15820 0.0096 -
7.2020 15830 0.0099 -
7.2066 15840 0.0097 -
7.2111 15850 0.01 -
7.2157 15860 0.0094 -
7.2202 15870 0.01 -
7.2247 15880 0.0093 -
7.2293 15890 0.0094 -
7.2338 15900 0.0095 0.0139
7.2384 15910 0.0096 -
7.2429 15920 0.0096 -
7.2475 15930 0.0099 -
7.2520 15940 0.0099 -
7.2566 15950 0.0097 -
7.2611 15960 0.0097 -
7.2657 15970 0.0097 -
7.2702 15980 0.0095 -
7.2748 15990 0.0098 -
7.2793 16000 0.0099 0.0138
7.2839 16010 0.0098 -
7.2884 16020 0.0096 -
7.2930 16030 0.0097 -
7.2975 16040 0.0094 -
7.3021 16050 0.0098 -
7.3066 16060 0.0098 -
7.3112 16070 0.0097 -
7.3157 16080 0.0096 -
7.3203 16090 0.0097 -
7.3248 16100 0.0095 0.0139
7.3294 16110 0.0094 -
7.3339 16120 0.0101 -
7.3385 16130 0.0096 -
7.3430 16140 0.0099 -
7.3476 16150 0.0097 -
7.3521 16160 0.01 -
7.3567 16170 0.0097 -
7.3612 16180 0.0097 -
7.3658 16190 0.0097 -
7.3703 16200 0.0094 0.0139
7.3749 16210 0.0094 -
7.3794 16220 0.0096 -
7.3840 16230 0.0097 -
7.3885 16240 0.0101 -
7.3931 16250 0.0096 -
7.3976 16260 0.0096 -
7.4022 16270 0.01 -
7.4067 16280 0.0098 -
7.4113 16290 0.0096 -
7.4158 16300 0.0097 0.0139
7.4204 16310 0.0094 -
7.4249 16320 0.0099 -
7.4295 16330 0.0095 -
7.4340 16340 0.0097 -
7.4386 16350 0.0099 -
7.4431 16360 0.0097 -
7.4477 16370 0.0098 -
7.4522 16380 0.0096 -
7.4568 16390 0.0101 -
7.4613 16400 0.0094 0.0140
7.4659 16410 0.0096 -
7.4704 16420 0.0097 -
7.4750 16430 0.0096 -
7.4795 16440 0.0097 -
7.4841 16450 0.0097 -
7.4886 16460 0.0098 -
7.4932 16470 0.0096 -
7.4977 16480 0.0095 -
7.5023 16490 0.0096 -
7.5068 16500 0.0096 0.0138
7.5114 16510 0.0096 -
7.5159 16520 0.01 -
7.5205 16530 0.0097 -
7.5250 16540 0.0095 -
7.5296 16550 0.0096 -
7.5341 16560 0.0096 -
7.5387 16570 0.0099 -
7.5432 16580 0.0096 -
7.5478 16590 0.0094 -
7.5523 16600 0.01 0.0138
7.5569 16610 0.0095 -
7.5614 16620 0.0096 -
7.5660 16630 0.0096 -
7.5705 16640 0.0098 -
7.5751 16650 0.0095 -
7.5796 16660 0.0095 -
7.5842 16670 0.0097 -
7.5887 16680 0.0101 -
7.5933 16690 0.0098 -
7.5978 16700 0.0095 0.0138
7.6024 16710 0.0097 -
7.6069 16720 0.0098 -
7.6115 16730 0.0096 -
7.6160 16740 0.0102 -
7.6206 16750 0.0096 -
7.6251 16760 0.0099 -
7.6297 16770 0.0098 -
7.6342 16780 0.0096 -
7.6388 16790 0.0096 -
7.6433 16800 0.0098 0.0138
7.6479 16810 0.0098 -
7.6524 16820 0.0096 -
7.6570 16830 0.0096 -
7.6615 16840 0.0098 -
7.6661 16850 0.01 -
7.6706 16860 0.0098 -
7.6752 16870 0.0099 -
7.6797 16880 0.0094 -
7.6843 16890 0.0099 -
7.6888 16900 0.0099 0.0138
7.6934 16910 0.0099 -
7.6979 16920 0.0096 -
7.7025 16930 0.0097 -
7.7070 16940 0.0095 -
7.7116 16950 0.0096 -
7.7161 16960 0.0098 -
7.7207 16970 0.0096 -
7.7252 16980 0.0098 -
7.7298 16990 0.0097 -
7.7343 17000 0.0096 0.0137
7.7389 17010 0.0096 -
7.7434 17020 0.0095 -
7.7480 17030 0.0097 -
7.7525 17040 0.0094 -
7.7571 17050 0.0099 -
7.7616 17060 0.0101 -
7.7662 17070 0.0098 -
7.7707 17080 0.0096 -
7.7753 17090 0.0098 -
7.7798 17100 0.0098 0.0138
7.7843 17110 0.0095 -
7.7889 17120 0.0094 -
7.7934 17130 0.0098 -
7.7980 17140 0.0097 -
7.8025 17150 0.0099 -
7.8071 17160 0.0101 -
7.8116 17170 0.0098 -
7.8162 17180 0.0097 -
7.8207 17190 0.0096 -
7.8253 17200 0.0095 0.0138
7.8298 17210 0.0094 -
7.8344 17220 0.0098 -
7.8389 17230 0.0101 -
7.8435 17240 0.0096 -
7.8480 17250 0.0097 -
7.8526 17260 0.0095 -
7.8571 17270 0.0099 -
7.8617 17280 0.0096 -
7.8662 17290 0.0099 -
7.8708 17300 0.0095 0.0137
7.8753 17310 0.0094 -
7.8799 17320 0.0097 -
7.8844 17330 0.0097 -
7.8890 17340 0.0101 -
7.8935 17350 0.0096 -
7.8981 17360 0.0098 -
7.9026 17370 0.0095 -
7.9072 17380 0.0098 -
7.9117 17390 0.0096 -
7.9163 17400 0.0099 0.0138
7.9208 17410 0.0097 -
7.9254 17420 0.0095 -
7.9299 17430 0.0096 -
7.9345 17440 0.0095 -
7.9390 17450 0.0097 -
7.9436 17460 0.0098 -
7.9481 17470 0.01 -
7.9527 17480 0.0095 -
7.9572 17490 0.0098 -
7.9618 17500 0.0096 0.0136
7.9663 17510 0.0099 -
7.9709 17520 0.0097 -
7.9754 17530 0.0096 -
7.9800 17540 0.0099 -
7.9845 17550 0.0099 -
7.9891 17560 0.01 -
7.9936 17570 0.0095 -
7.9982 17580 0.0095 -
8.0027 17590 0.0096 -
8.0073 17600 0.0094 0.0137
8.0118 17610 0.0091 -
8.0164 17620 0.0091 -
8.0209 17630 0.0089 -
8.0255 17640 0.0088 -
8.0300 17650 0.0091 -
8.0346 17660 0.0089 -
8.0391 17670 0.0088 -
8.0437 17680 0.0092 -
8.0482 17690 0.009 -
8.0528 17700 0.0091 0.0137
8.0573 17710 0.0089 -
8.0619 17720 0.0092 -
8.0664 17730 0.0091 -
8.0710 17740 0.0092 -
8.0755 17750 0.0089 -
8.0801 17760 0.0094 -
8.0846 17770 0.0094 -
8.0892 17780 0.009 -
8.0937 17790 0.0094 -
8.0983 17800 0.0091 0.0136
8.1028 17810 0.009 -
8.1074 17820 0.0087 -
8.1119 17830 0.0087 -
8.1165 17840 0.0089 -
8.1210 17850 0.0088 -
8.1256 17860 0.0092 -
8.1301 17870 0.009 -
8.1347 17880 0.009 -
8.1392 17890 0.0093 -
8.1438 17900 0.0089 0.0136
8.1483 17910 0.0092 -
8.1529 17920 0.009 -
8.1574 17930 0.0092 -
8.1620 17940 0.009 -
8.1665 17950 0.0091 -
8.1711 17960 0.0092 -
8.1756 17970 0.0094 -
8.1802 17980 0.0093 -
8.1847 17990 0.0091 -
8.1893 18000 0.0096 0.0137
8.1938 18010 0.0086 -
8.1984 18020 0.009 -
8.2029 18030 0.0089 -
8.2075 18040 0.009 -
8.2120 18050 0.0094 -
8.2166 18060 0.0093 -
8.2211 18070 0.009 -
8.2257 18080 0.0091 -
8.2302 18090 0.0092 -
8.2348 18100 0.0092 0.0136
8.2393 18110 0.0093 -
8.2439 18120 0.0091 -
8.2484 18130 0.0092 -
8.2530 18140 0.0091 -
8.2575 18150 0.009 -
8.2621 18160 0.0094 -
8.2666 18170 0.0093 -
8.2712 18180 0.0093 -
8.2757 18190 0.009 -
8.2803 18200 0.0088 0.0136
8.2848 18210 0.0089 -
8.2894 18220 0.0087 -
8.2939 18230 0.0092 -
8.2985 18240 0.0088 -
8.3030 18250 0.0095 -
8.3076 18260 0.0093 -
8.3121 18270 0.009 -
8.3167 18280 0.0093 -
8.3212 18290 0.0093 -
8.3258 18300 0.0093 0.0136
8.3303 18310 0.009 -
8.3348 18320 0.0097 -
8.3394 18330 0.0092 -
8.3439 18340 0.0092 -
8.3485 18350 0.0087 -
8.3530 18360 0.0092 -
8.3576 18370 0.0093 -
8.3621 18380 0.0092 -
8.3667 18390 0.0092 -
8.3712 18400 0.0092 0.0136
8.3758 18410 0.0092 -
8.3803 18420 0.009 -
8.3849 18430 0.0091 -
8.3894 18440 0.0093 -
8.3940 18450 0.0093 -
8.3985 18460 0.0089 -
8.4031 18470 0.009 -
8.4076 18480 0.0093 -
8.4122 18490 0.0092 -
8.4167 18500 0.009 0.0136
8.4213 18510 0.0088 -
8.4258 18520 0.0092 -
8.4304 18530 0.0089 -
8.4349 18540 0.0092 -
8.4395 18550 0.0089 -
8.4440 18560 0.0094 -
8.4486 18570 0.0091 -
8.4531 18580 0.0092 -
8.4577 18590 0.0088 -
8.4622 18600 0.0092 0.0135
8.4668 18610 0.0091 -
8.4713 18620 0.0092 -
8.4759 18630 0.0095 -
8.4804 18640 0.0094 -
8.4850 18650 0.009 -
8.4895 18660 0.0089 -
8.4941 18670 0.0091 -
8.4986 18680 0.0088 -
8.5032 18690 0.0094 -
8.5077 18700 0.0094 0.0135
8.5123 18710 0.0092 -
8.5168 18720 0.0094 -
8.5214 18730 0.0094 -
8.5259 18740 0.0089 -
8.5305 18750 0.0094 -
8.5350 18760 0.0093 -
8.5396 18770 0.0093 -
8.5441 18780 0.0091 -
8.5487 18790 0.009 -
8.5532 18800 0.0089 0.0135
8.5578 18810 0.0087 -
8.5623 18820 0.009 -
8.5669 18830 0.009 -
8.5714 18840 0.009 -
8.5760 18850 0.0091 -
8.5805 18860 0.0091 -
8.5851 18870 0.0089 -
8.5896 18880 0.0095 -
8.5942 18890 0.0092 -
8.5987 18900 0.0093 0.0135
8.6033 18910 0.0095 -
8.6078 18920 0.0095 -
8.6124 18930 0.0094 -
8.6169 18940 0.0093 -
8.6215 18950 0.0089 -
8.6260 18960 0.0089 -
8.6306 18970 0.0094 -
8.6351 18980 0.0096 -
8.6397 18990 0.0092 -
8.6442 19000 0.0091 0.0136
8.6488 19010 0.0092 -
8.6533 19020 0.0091 -
8.6579 19030 0.0089 -
8.6624 19040 0.0088 -
8.6670 19050 0.009 -
8.6715 19060 0.0093 -
8.6761 19070 0.0092 -
8.6806 19080 0.0091 -
8.6852 19090 0.0091 -
8.6897 19100 0.0092 0.0135
8.6943 19110 0.0089 -
8.6988 19120 0.0091 -
8.7034 19130 0.0092 -
8.7079 19140 0.009 -
8.7125 19150 0.009 -
8.7170 19160 0.0093 -
8.7216 19170 0.0089 -
8.7261 19180 0.0091 -
8.7307 19190 0.009 -
8.7352 19200 0.0093 0.0135
8.7398 19210 0.0091 -
8.7443 19220 0.0096 -
8.7489 19230 0.009 -
8.7534 19240 0.0091 -
8.7580 19250 0.009 -
8.7625 19260 0.0094 -
8.7671 19270 0.0087 -
8.7716 19280 0.0093 -
8.7762 19290 0.0086 -
8.7807 19300 0.0092 0.0135
8.7853 19310 0.0092 -
8.7898 19320 0.0091 -
8.7944 19330 0.0091 -
8.7989 19340 0.0089 -
8.8035 19350 0.0092 -
8.8080 19360 0.0091 -
8.8126 19370 0.0088 -
8.8171 19380 0.0096 -
8.8217 19390 0.0089 -
8.8262 19400 0.0091 0.0134
8.8308 19410 0.0093 -
8.8353 19420 0.0091 -
8.8399 19430 0.0092 -
8.8444 19440 0.009 -
8.8490 19450 0.0091 -
8.8535 19460 0.0089 -
8.8581 19470 0.0089 -
8.8626 19480 0.0093 -
8.8672 19490 0.0092 -
8.8717 19500 0.0091 0.0135
8.8763 19510 0.0092 -
8.8808 19520 0.009 -
8.8854 19530 0.0092 -
8.8899 19540 0.009 -
8.8944 19550 0.0089 -
8.8990 19560 0.0092 -
8.9035 19570 0.0089 -
8.9081 19580 0.0094 -
8.9126 19590 0.009 -
8.9172 19600 0.009 0.0134
8.9217 19610 0.0089 -
8.9263 19620 0.0094 -
8.9308 19630 0.0092 -
8.9354 19640 0.0093 -
8.9399 19650 0.0087 -
8.9445 19660 0.0091 -
8.9490 19670 0.0088 -
8.9536 19680 0.0093 -
8.9581 19690 0.0091 -
8.9627 19700 0.0093 0.0134
8.9672 19710 0.0089 -
8.9718 19720 0.0094 -
8.9763 19730 0.009 -
8.9809 19740 0.0091 -
8.9854 19750 0.009 -
8.9900 19760 0.0089 -
8.9945 19770 0.0089 -
8.9991 19780 0.0093 -
9.0036 19790 0.0089 -
9.0082 19800 0.0089 0.0133
9.0127 19810 0.009 -
9.0173 19820 0.009 -
9.0218 19830 0.0086 -
9.0264 19840 0.0089 -
9.0309 19850 0.0091 -
9.0355 19860 0.0089 -
9.0400 19870 0.0085 -
9.0446 19880 0.0085 -
9.0491 19890 0.0088 -
9.0537 19900 0.0083 0.0135
9.0582 19910 0.0089 -
9.0628 19920 0.0087 -
9.0673 19930 0.0089 -
9.0719 19940 0.0086 -
9.0764 19950 0.0088 -
9.0810 19960 0.0089 -
9.0855 19970 0.0089 -
9.0901 19980 0.0086 -
9.0946 19990 0.0087 -
9.0992 20000 0.0091 0.0134
9.1037 20010 0.0086 -
9.1083 20020 0.0083 -
9.1128 20030 0.0086 -
9.1174 20040 0.0087 -
9.1219 20050 0.0089 -
9.1265 20060 0.0085 -
9.1310 20070 0.0089 -
9.1356 20080 0.0087 -
9.1401 20090 0.0088 -
9.1447 20100 0.0087 0.0134
9.1492 20110 0.0089 -
9.1538 20120 0.0088 -
9.1583 20130 0.0089 -
9.1629 20140 0.0083 -
9.1674 20150 0.0092 -
9.1720 20160 0.0089 -
9.1765 20170 0.0087 -
9.1811 20180 0.0085 -
9.1856 20190 0.0089 -
9.1902 20200 0.0087 0.0134
9.1947 20210 0.0088 -
9.1993 20220 0.0088 -
9.2038 20230 0.0084 -
9.2084 20240 0.0088 -
9.2129 20250 0.0087 -
9.2175 20260 0.009 -
9.2220 20270 0.0087 -
9.2266 20280 0.0087 -
9.2311 20290 0.0087 -
9.2357 20300 0.0086 0.0135
9.2402 20310 0.0086 -
9.2448 20320 0.0088 -
9.2493 20330 0.0085 -
9.2539 20340 0.0088 -
9.2584 20350 0.0089 -
9.2630 20360 0.0088 -
9.2675 20370 0.009 -
9.2721 20380 0.0087 -
9.2766 20390 0.0086 -
9.2812 20400 0.0089 0.0134
9.2857 20410 0.0083 -
9.2903 20420 0.0086 -
9.2948 20430 0.0088 -
9.2994 20440 0.0084 -
9.3039 20450 0.0085 -
9.3085 20460 0.0086 -
9.3130 20470 0.0089 -
9.3176 20480 0.0089 -
9.3221 20490 0.0089 -
9.3267 20500 0.0088 0.0134
9.3312 20510 0.0088 -
9.3358 20520 0.0086 -
9.3403 20530 0.0088 -
9.3449 20540 0.0086 -
9.3494 20550 0.0087 -
9.3540 20560 0.0089 -
9.3585 20570 0.009 -
9.3631 20580 0.0089 -
9.3676 20590 0.0086 -
9.3722 20600 0.0085 0.0133
9.3767 20610 0.0089 -
9.3813 20620 0.0086 -
9.3858 20630 0.0086 -
9.3904 20640 0.0088 -
9.3949 20650 0.0087 -
9.3995 20660 0.0086 -
9.4040 20670 0.0087 -
9.4086 20680 0.0086 -
9.4131 20690 0.0086 -
9.4177 20700 0.009 0.0134
9.4222 20710 0.0088 -
9.4268 20720 0.0085 -
9.4313 20730 0.0089 -
9.4359 20740 0.0084 -
9.4404 20750 0.0085 -
9.4449 20760 0.0088 -
9.4495 20770 0.0086 -
9.4540 20780 0.0085 -
9.4586 20790 0.0089 -
9.4631 20800 0.0086 0.0133
9.4677 20810 0.0087 -
9.4722 20820 0.0083 -
9.4768 20830 0.0089 -
9.4813 20840 0.0087 -
9.4859 20850 0.0084 -
9.4904 20860 0.0083 -
9.4950 20870 0.0086 -
9.4995 20880 0.0087 -
9.5041 20890 0.0088 -
9.5086 20900 0.0084 0.0134
9.5132 20910 0.0085 -
9.5177 20920 0.0087 -
9.5223 20930 0.009 -
9.5268 20940 0.0089 -
9.5314 20950 0.0085 -
9.5359 20960 0.0085 -
9.5405 20970 0.0085 -
9.5450 20980 0.0087 -
9.5496 20990 0.0084 -
9.5541 21000 0.0089 0.0133
9.5587 21010 0.0088 -
9.5632 21020 0.0083 -
9.5678 21030 0.0088 -
9.5723 21040 0.0087 -
9.5769 21050 0.0085 -
9.5814 21060 0.0086 -
9.5860 21070 0.0087 -
9.5905 21080 0.0089 -
9.5951 21090 0.0086 -
9.5996 21100 0.0087 0.0133
9.6042 21110 0.009 -
9.6087 21120 0.0091 -
9.6133 21130 0.0092 -
9.6178 21140 0.0088 -
9.6224 21150 0.0085 -
9.6269 21160 0.0087 -
9.6315 21170 0.0086 -
9.6360 21180 0.0089 -
9.6406 21190 0.0086 -
9.6451 21200 0.0084 0.0133
9.6497 21210 0.0091 -
9.6542 21220 0.0088 -
9.6588 21230 0.0091 -
9.6633 21240 0.0089 -
9.6679 21250 0.0086 -
9.6724 21260 0.0087 -
9.6770 21270 0.0086 -
9.6815 21280 0.0089 -
9.6861 21290 0.0084 -
9.6906 21300 0.0087 0.0134
9.6952 21310 0.0084 -
9.6997 21320 0.0087 -
9.7043 21330 0.0087 -
9.7088 21340 0.0085 -
9.7134 21350 0.0089 -
9.7179 21360 0.0089 -
9.7225 21370 0.0084 -
9.7270 21380 0.0088 -
9.7316 21390 0.0086 -
9.7361 21400 0.0087 0.0134
9.7407 21410 0.0086 -
9.7452 21420 0.0089 -
9.7498 21430 0.0087 -
9.7543 21440 0.0083 -
9.7589 21450 0.0086 -
9.7634 21460 0.0085 -
9.7680 21470 0.0084 -
9.7725 21480 0.009 -
9.7771 21490 0.0086 -
9.7816 21500 0.0086 0.0134
9.7862 21510 0.0088 -
9.7907 21520 0.0085 -
9.7953 21530 0.0088 -
9.7998 21540 0.0087 -
9.8044 21550 0.0085 -
9.8089 21560 0.0085 -
9.8135 21570 0.0086 -
9.8180 21580 0.0085 -
9.8226 21590 0.0089 -
9.8271 21600 0.0083 0.0133
9.8317 21610 0.0085 -
9.8362 21620 0.0088 -
9.8408 21630 0.0087 -
9.8453 21640 0.0086 -
9.8499 21650 0.0089 -
9.8544 21660 0.0085 -
9.8590 21670 0.009 -
9.8635 21680 0.0092 -
9.8681 21690 0.009 -
9.8726 21700 0.0089 0.0133
9.8772 21710 0.009 -
9.8817 21720 0.0089 -
9.8863 21730 0.0091 -
9.8908 21740 0.0085 -
9.8954 21750 0.0086 -
9.8999 21760 0.0089 -
9.9045 21770 0.0083 -
9.9090 21780 0.009 -
9.9136 21790 0.0084 -
9.9181 21800 0.0089 0.0133
9.9227 21810 0.0089 -
9.9272 21820 0.0084 -
9.9318 21830 0.0086 -
9.9363 21840 0.0088 -
9.9409 21850 0.0087 -
9.9454 21860 0.0087 -
9.9500 21870 0.0086 -
9.9545 21880 0.0085 -
9.9591 21890 0.0086 -
9.9636 21900 0.0087 0.0133
9.9682 21910 0.0088 -
9.9727 21920 0.0087 -
9.9773 21930 0.0084 -
9.9818 21940 0.0089 -
9.9864 21950 0.0086 -
9.9909 21960 0.009 -
9.9955 21970 0.0089 -
10.0 21980 0.0086 -
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 3.2.0
  • Transformers: 4.45.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 1.0.1
  • Datasets: 3.0.1
  • Tokenizers: 0.20.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
Downloads last month
2
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ZeniZeni/trained_model

Finetuned
(1)
this model