Kenneth Hamilton PRO
ZennyKenny
AI & ML interests
Development and Ops for LLMs and CV.
Recent Activity
posted
an
update
about 21 hours ago
On-demand audio transcription is an often-requested service without many good options on the market.
Using Hugging Face Spaces with Gradio SDK and the OpenAI Whisper model, I've put together a simple interface that supports the transcription and summarisation of audio files up to five minutes in length, completely open source and running on CPU upgrade. The cool thing is that it's built without a dedicated inference endpoint, completely on public infrastructure.
Check it out: https://huggingface.co/spaces/ZennyKenny/AudioTranscribe
I wrote a short article about the backend mechanics for those who are interested: https://huggingface.co/blog/ZennyKenny/on-demand-public-transcription
published
an
article
about 21 hours ago
On-Demand Audio Transcription using Public Infrastructure
updated
a Space
about 22 hours ago
ZennyKenny/AudioTranscribe
Articles
Organizations
ZennyKenny's activity
posted
an
update
about 21 hours ago
Post
263
On-demand audio transcription is an often-requested service without many good options on the market.
Using Hugging Face Spaces with Gradio SDK and the OpenAI Whisper model, I've put together a simple interface that supports the transcription and summarisation of audio files up to five minutes in length, completely open source and running on CPU upgrade. The cool thing is that it's built without a dedicated inference endpoint, completely on public infrastructure.
Check it out: ZennyKenny/AudioTranscribe
I wrote a short article about the backend mechanics for those who are interested: https://huggingface.co/blog/ZennyKenny/on-demand-public-transcription
Using Hugging Face Spaces with Gradio SDK and the OpenAI Whisper model, I've put together a simple interface that supports the transcription and summarisation of audio files up to five minutes in length, completely open source and running on CPU upgrade. The cool thing is that it's built without a dedicated inference endpoint, completely on public infrastructure.
Check it out: ZennyKenny/AudioTranscribe
I wrote a short article about the backend mechanics for those who are interested: https://huggingface.co/blog/ZennyKenny/on-demand-public-transcription
published
an
article
about 21 hours ago
Article
On-Demand Audio Transcription using Public Infrastructure
By
•
reacted to
takarajordan's
post with 🔥
about 2 months ago
Post
1209
I'm not sure why I haven't done this already!
I just made a space to count and visualize tokens for Diffusion models, no more guesswork! It's super fast too.
Check it out here and try out your prompts: takarajordan/DiffusionTokenizer
Uses these tokenizers below:
openai/clip-vit-large-patch14
google/t5-v1_1-xxl
I just made a space to count and visualize tokens for Diffusion models, no more guesswork! It's super fast too.
Check it out here and try out your prompts: takarajordan/DiffusionTokenizer
Uses these tokenizers below:
openai/clip-vit-large-patch14
google/t5-v1_1-xxl
reacted to
davidberenstein1957's
post with 🔥
about 2 months ago
Post
1709
Let’s make a generation of amazing image-generation models
The best image generation models are trained on human preference datasets, where annotators have selected the best image from a choice of two. Unfortunately, many of these datasets are closed source so the community cannot train open models on them. Let’s change that!
The community can contribute image preferences for an open-source dataset that could be used for building AI models that convert text to image, like the flux or stable diffusion families. The dataset will be open source so everyone can use it to train models that we can all use.
Blog: https://huggingface.co/blog/burtenshaw/image-preferences
The best image generation models are trained on human preference datasets, where annotators have selected the best image from a choice of two. Unfortunately, many of these datasets are closed source so the community cannot train open models on them. Let’s change that!
The community can contribute image preferences for an open-source dataset that could be used for building AI models that convert text to image, like the flux or stable diffusion families. The dataset will be open source so everyone can use it to train models that we can all use.
Blog: https://huggingface.co/blog/burtenshaw/image-preferences
reacted to
davanstrien's
post with 🔥
about 2 months ago
Post
2488
First dataset for the new Hugging Face Bluesky community organisation:
bluesky-community/one-million-bluesky-posts 🦋
📊 1M public posts from Bluesky's firehose API
🔍 Includes text, metadata, and language predictions
🔬 Perfect to experiment with using ML for Bluesky 🤗
Excited to see people build more open tools for a more open social media platform!
📊 1M public posts from Bluesky's firehose API
🔍 Includes text, metadata, and language predictions
🔬 Perfect to experiment with using ML for Bluesky 🤗
Excited to see people build more open tools for a more open social media platform!
Update README.md
2
#4 opened about 2 months ago
by
burtenshaw
reacted to
vincentg64's
post with 🧠
about 2 months ago
Post
1186
There is no such thing as a Trained LLM https://mltblog.com/3CEJ9Pt
What I mean here is that traditional LLMs are trained on tasks irrelevant to what they will do for the user. It’s like training a plane to efficiently operate on the runway, but not to fly. In short, it is almost impossible to train an LLM, and evaluating is just as challenging. Then, training is not even necessary. In this article, I dive on all these topics.
➡️ Training LLMs for the wrong tasks
Since the beginnings with Bert, training an LLM typically consists of predicting the next tokens in a sentence, or removing some tokens and then have your algorithm fill the blanks. You optimize the underlying deep neural networks to perform these supervised learning tasks as well as possible. Typically, it involves growing the list of tokens in the training set to billions or trillions, increasing the cost and time to train. However, recently, there is a tendency to work with smaller datasets, by distilling the input sources and token lists. After all, out of one trillion tokens, 99% are noise and do not contribute to improving the results for the end-user; they may even contribute to hallucinations. Keep in mind that human beings have a vocabulary of about 30,000 keywords, and that the number of potential standardized prompts on a specialized corpus (and thus the number of potential answers) is less than a million.
➡️ Read the full articles at https://mltblog.com/3CEJ9Pt, also featuring issues with evaluation metrics and the benefits of untrained LLMs.
What I mean here is that traditional LLMs are trained on tasks irrelevant to what they will do for the user. It’s like training a plane to efficiently operate on the runway, but not to fly. In short, it is almost impossible to train an LLM, and evaluating is just as challenging. Then, training is not even necessary. In this article, I dive on all these topics.
➡️ Training LLMs for the wrong tasks
Since the beginnings with Bert, training an LLM typically consists of predicting the next tokens in a sentence, or removing some tokens and then have your algorithm fill the blanks. You optimize the underlying deep neural networks to perform these supervised learning tasks as well as possible. Typically, it involves growing the list of tokens in the training set to billions or trillions, increasing the cost and time to train. However, recently, there is a tendency to work with smaller datasets, by distilling the input sources and token lists. After all, out of one trillion tokens, 99% are noise and do not contribute to improving the results for the end-user; they may even contribute to hallucinations. Keep in mind that human beings have a vocabulary of about 30,000 keywords, and that the number of potential standardized prompts on a specialized corpus (and thus the number of potential answers) is less than a million.
➡️ Read the full articles at https://mltblog.com/3CEJ9Pt, also featuring issues with evaluation metrics and the benefits of untrained LLMs.
reacted to
luigi12345's
post with 👍
about 2 months ago
Post
3725
MinimalScrap
Only Free Dependencies. Save it.It is quite useful uh.
Only Free Dependencies. Save it.It is quite useful uh.
!pip install googlesearch-python requests
from googlesearch import search
import requests
query = "Glaucoma"
for url in search(f"{query} site:nih.gov filetype:pdf", 20):
if url.endswith(".pdf"):
with open(url.split("/")[-1], "wb") as f: f.write(requests.get(url).content)
print("✅" + url.split("/")[-1])
print("Done!")
posted
an
update
about 2 months ago
Post
1213
I've joined the Bluesky community. Interested to see what decentralized social media looks like in action: https://bsky.app/profile/kghamilton.bsky.social
Looking forward to following other AI builders, tech enthusiasts, goth doomscrollers, and ironic meme creators.
Looking forward to following other AI builders, tech enthusiasts, goth doomscrollers, and ironic meme creators.
reacted to
malhajar's
post with 🔥
about 2 months ago
Post
4379
🇫🇷 Lancement officiel de l'OpenLLM French Leaderboard : initiative open-source pour référencer l’évaluation des LLMs francophones
Après beaucoup d’efforts et de sueurs avec Alexandre Lavallee, nous sommes ravis d’annoncer que le OpenLLMFrenchLeaderboard est en ligne sur Hugging Face (space url: le-leadboard/OpenLLMFrenchLeaderboard) la toute première plateforme dédiée à l’évaluation des grands modèles de langage (LLM) en français. 🇫🇷✨
Ce projet de longue haleine est avant tout une œuvre de passion mais surtout une nécessité absolue. Il devient urgent et vital d'oeuvrer à plus de transparence dans ce domaine stratégique des LLM dits multilingues. La première pièce à l'édifice est donc la mise en place d'une évaluation systématique et systémique des modèles actuels et futurs.
Votre modèle IA français est-il prêt à se démarquer ? Soumettez le dans notre espace, et voyez comment vous vous comparez par rapport aux autres modèles.
❓ Comment ça marche :
Soumettez votre LLM français pour évaluation, et nous le testerons sur des benchmarks de référence spécifiquement adaptés pour la langue française — notre suite de benchmarks comprend :
- BBH-fr : Raisonnement complexe
- IFEval-fr : Suivi d'instructions
- GPQA-fr : Connaissances avancées
- MUSR-fr : Raisonnement narratif
- MATH_LVL5-fr : Capacités mathématiques
- MMMLU-fr : Compréhension multitâche
Le processus est encore manuel, mais nous travaillons sur son automatisation, avec le soutien de la communauté Hugging Face.
@clem , on se prépare pour une mise à niveau de l’espace ? 😏👀
Ce n'est pas qu'une question de chiffres—il s'agit de créer une IA qui reflète vraiment notre langue, notre culture et nos valeurs. OpenLLMFrenchLeaderboard est notre contribution personnelle pour façonner l'avenir des LLM en France.
Après beaucoup d’efforts et de sueurs avec Alexandre Lavallee, nous sommes ravis d’annoncer que le OpenLLMFrenchLeaderboard est en ligne sur Hugging Face (space url: le-leadboard/OpenLLMFrenchLeaderboard) la toute première plateforme dédiée à l’évaluation des grands modèles de langage (LLM) en français. 🇫🇷✨
Ce projet de longue haleine est avant tout une œuvre de passion mais surtout une nécessité absolue. Il devient urgent et vital d'oeuvrer à plus de transparence dans ce domaine stratégique des LLM dits multilingues. La première pièce à l'édifice est donc la mise en place d'une évaluation systématique et systémique des modèles actuels et futurs.
Votre modèle IA français est-il prêt à se démarquer ? Soumettez le dans notre espace, et voyez comment vous vous comparez par rapport aux autres modèles.
❓ Comment ça marche :
Soumettez votre LLM français pour évaluation, et nous le testerons sur des benchmarks de référence spécifiquement adaptés pour la langue française — notre suite de benchmarks comprend :
- BBH-fr : Raisonnement complexe
- IFEval-fr : Suivi d'instructions
- GPQA-fr : Connaissances avancées
- MUSR-fr : Raisonnement narratif
- MATH_LVL5-fr : Capacités mathématiques
- MMMLU-fr : Compréhension multitâche
Le processus est encore manuel, mais nous travaillons sur son automatisation, avec le soutien de la communauté Hugging Face.
@clem , on se prépare pour une mise à niveau de l’espace ? 😏👀
Ce n'est pas qu'une question de chiffres—il s'agit de créer une IA qui reflète vraiment notre langue, notre culture et nos valeurs. OpenLLMFrenchLeaderboard est notre contribution personnelle pour façonner l'avenir des LLM en France.
posted
an
update
about 2 months ago
Post
360
Using AI to teach English as a Foreign Language? EFL teachers often have busy schedules, variable class sizes, and unexpected cancellations. Introducting VocabSova:
ZennyKenny/VocabSova
VocabSova is a simple chatbot interface that helps teachers create topical vocabulary lists, custom worksheets using that vocabulary, and group activities on a defined theme for a specific English-speaking level (according to CEFR international standards).
There is a great use case for AI in nearly every field, and language learning is a particularly apt domain in my opinion. VocabSova is in active development during its Alpha release, all feedback welcome.
VocabSova is a simple chatbot interface that helps teachers create topical vocabulary lists, custom worksheets using that vocabulary, and group activities on a defined theme for a specific English-speaking level (according to CEFR international standards).
There is a great use case for AI in nearly every field, and language learning is a particularly apt domain in my opinion. VocabSova is in active development during its Alpha release, all feedback welcome.