|
--- |
|
library_name: transformers |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/nllb-200-distilled-600M |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: en_to_dzo_nllb_mul_mt_nlp_m4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# en_to_dzo_nllb_mul_mt_nlp_m4 |
|
|
|
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7293 |
|
- Bleu: 19.2074 |
|
- Gen Len: 15.6777 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 9 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| |
|
| 2.2141 | 1.0 | 562 | 1.8532 | 9.1051 | 16.0711 | |
|
| 1.7479 | 2.0 | 1124 | 1.7386 | 10.4502 | 15.3854 | |
|
| 1.501 | 3.0 | 1686 | 1.6975 | 18.3404 | 16.2342 | |
|
| 1.3186 | 4.0 | 2248 | 1.6957 | 17.8507 | 15.6396 | |
|
| 1.1776 | 5.0 | 2810 | 1.6957 | 17.353 | 15.4945 | |
|
| 1.0629 | 6.0 | 3372 | 1.7076 | 17.9624 | 15.6937 | |
|
| 0.9827 | 7.0 | 3934 | 1.7202 | 17.6422 | 15.8619 | |
|
| 0.9099 | 8.0 | 4496 | 1.7254 | 19.1543 | 15.5365 | |
|
| 0.8253 | 9.0 | 5058 | 1.7293 | 19.2074 | 15.6777 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|