Gpt / setup.py
Zerx966's picture
Upload 10 files
3ef28b3 verified
# Copyright (c) 2023, Albert Gu, Tri Dao.
import warnings
import os
from pathlib import Path
from packaging.version import parse, Version
from setuptools import setup, find_packages
import subprocess
import torch
from torch.utils.cpp_extension import (
BuildExtension,
CppExtension,
CUDAExtension,
CUDA_HOME,
)
PACKAGE_NAME = "blackmamba"
VERSION = "0.0.1"
with open("README.md", "r", encoding="utf-8") as fh:
long_description = fh.read()
# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))
# FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
# SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
FORCE_BUILD = os.getenv("MAMBA_FORCE_BUILD", "FALSE") == "TRUE"
SKIP_CUDA_BUILD = os.getenv("MAMBA_SKIP_CUDA_BUILD", "FALSE") == "TRUE"
# For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
FORCE_CXX11_ABI = os.getenv("MAMBA_FORCE_CXX11_ABI", "FALSE") == "TRUE"
def get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output(
[cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True
)
output = raw_output.split()
release_idx = output.index("release") + 1
bare_metal_version = parse(output[release_idx].split(",")[0])
return raw_output, bare_metal_version
def check_if_cuda_home_none(global_option: str) -> None:
if CUDA_HOME is not None:
return
# warn instead of error because user could be downloading prebuilt wheels, so nvcc won't be necessary
# in that case.
warnings.warn(
f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
"If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
"only images whose names contain 'devel' will provide nvcc."
)
def append_nvcc_threads(nvcc_extra_args):
return nvcc_extra_args + ["--threads", "4"]
ext_modules = []
if not SKIP_CUDA_BUILD:
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split(".")[0])
TORCH_MINOR = int(torch.__version__.split(".")[1])
check_if_cuda_home_none(PACKAGE_NAME)
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
if CUDA_HOME is not None:
_, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
if bare_metal_version < Version("11.6"):
raise RuntimeError(
f"{PACKAGE_NAME} is only supported on CUDA 11.6 and above. "
"Note: make sure nvcc has a supported version by running nvcc -V."
)
cc_flag.append("-gencode")
cc_flag.append("arch=compute_70,code=sm_70")
cc_flag.append("-gencode")
cc_flag.append("arch=compute_80,code=sm_80")
if bare_metal_version >= Version("11.8"):
cc_flag.append("-gencode")
cc_flag.append("arch=compute_90,code=sm_90")
# HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as
# torch._C._GLIBCXX_USE_CXX11_ABI
# https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920
if FORCE_CXX11_ABI:
torch._C._GLIBCXX_USE_CXX11_ABI = True
ext_modules.append(
CUDAExtension(
name="selective_scan_cuda",
sources=[
"csrc/selective_scan/selective_scan.cpp",
"csrc/selective_scan/selective_scan_fwd_fp32.cu",
"csrc/selective_scan/selective_scan_fwd_fp16.cu",
"csrc/selective_scan/selective_scan_fwd_bf16.cu",
"csrc/selective_scan/selective_scan_bwd_fp32_real.cu",
"csrc/selective_scan/selective_scan_bwd_fp32_complex.cu",
"csrc/selective_scan/selective_scan_bwd_fp16_real.cu",
"csrc/selective_scan/selective_scan_bwd_fp16_complex.cu",
"csrc/selective_scan/selective_scan_bwd_bf16_real.cu",
"csrc/selective_scan/selective_scan_bwd_bf16_complex.cu",
],
extra_compile_args={
"cxx": ["-O3", "-std=c++17"],
"nvcc": append_nvcc_threads(
[
"-O3",
"-std=c++17",
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"-U__CUDA_NO_BFLOAT16_OPERATORS__",
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
"-U__CUDA_NO_BFLOAT162_OPERATORS__",
"-U__CUDA_NO_BFLOAT162_CONVERSIONS__",
"--expt-relaxed-constexpr",
"--expt-extended-lambda",
"--use_fast_math",
"--ptxas-options=-v",
"-lineinfo",
]
+ cc_flag
),
},
include_dirs=[Path(this_dir) / "csrc" / "selective_scan"],
)
)
setup(
name=PACKAGE_NAME,
version=VERSION,
description="Blackmamba state-space + MoE model",
long_description=long_description,
long_description_content_type="text/markdown",
packages=find_packages(include=['ops'],),
exclude=(
"csrc",
"blackmamba.egg-info",
),
ext_modules=ext_modules,
cmdclass={"build_ext": BuildExtension},
python_requires=">=3.7",
install_requires=[
"torch",
"packaging",
"ninja",
"einops",
"triton",
"transformers",
"causal_conv1d>=1.1.0",
],
)