Self-Exploring Language Models: Active Preference Elicitation for Online Alignment.

SELM-Llama-3-8B-Instruct-iter-1

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct using synthetic data based on on the HuggingFaceH4/ultrafeedback_binarized dataset.

Model description

  • Model type: A 8B parameter Llama3-instruct-based Self-Exploring Language Models (SELM).
  • License: MIT

Results

AlpacaEval 2.0 (LC WR) MT-Bench (Average)
SELM-Llama-3-8B-Instruct-iter-3                33.47               8.29
SELM-Llama-3-8B-Instruct-iter-2                35.65               8.09
SELM-Llama-3-8B-Instruct-iter-1                32.02               7.92
Meta-Llama-3-8B-Instruct                24.31               7.93

Training hyperparameters

The following hyperparameters were used during training:

  • alpha: 0.0001
  • beta: 0.01
  • train_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • num_epochs: 1

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.19.1
Downloads last month
24
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ZhangShenao/SELM-Llama-3-8B-Instruct-iter-1

Finetuned
(529)
this model
Finetunes
1 model

Dataset used to train ZhangShenao/SELM-Llama-3-8B-Instruct-iter-1

Collection including ZhangShenao/SELM-Llama-3-8B-Instruct-iter-1