metadata
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
license: mit
pipeline_tag: feature-extraction
xlm-roberta-base fine-tuned for sentence embeddings with SimCSE (Gao et al., EMNLP 2021).
See a similar English model released by Gao et al.: https://huggingface.co/princeton-nlp/unsup-simcse-roberta-base.
Fine-tuning was done using the reference implementation of unsupervised SimCSE and the 1M sentences from English Wikipedia released by the authors.
As a sentence representation, we used the average of the last hidden states (pooler_type=avg
), which is compatible with Sentence-BERT.
Fine-tuning command:
python train.py \
--model_name_or_path xlm-roberta-base \
--train_file data/wiki1m_for_simcse.txt \
--output_dir unsup-simcse-xlm-roberta-base \
--num_train_epochs 1 \
--per_device_train_batch_size 32 \
--gradient_accumulation_steps 16 \
--learning_rate 1e-5 \
--max_seq_length 128 \
--pooler_type avg \
--overwrite_output_dir \
--temp 0.05 \
--do_train \
--fp16 \
--seed 28852
Citation
@inproceedings{vamvas-sennrich-2023-rsd,
title={Towards Unsupervised Recognition of Token-level Semantic Differences in Related Documents},
author={Jannis Vamvas and Rico Sennrich},
month = dec,
year = "2023",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
address = "Singapore",
publisher = "Association for Computational Linguistics",
}