a2ran's picture
Update README.md
4b6a50b
|
raw
history blame
6.68 kB
metadata
library_name: peft

About GPTeacher

GPTeacher๋Š” ๋กœ๋ด‡(Bot)์ด ์ถœ๋ ฅํ•˜๋Š” ๋“ฏํ•œ ๊ธฐ์กด LLM ๋ชจ๋ธ์˜ ์ถœ๋ ฅ๊ฐ’์„, ๊ฐ•์˜์ž๊ฐ€ ์‹ค์ œ๋กœ ํ•ด๋‹น ๋‚ด์šฉ์— ๋Œ€ํ•ด ๊ฐ•์˜ํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ํ’€์ด๊ณผ์ •์„ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

1. ์‚ฌ์šฉ์ ˆ์ฐจ

  • Install model and PEFT parameters
!pip install -U peft transformers optimum
!pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu117/
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, GPTQConfig

model_id = "TheBloke/WizardLM-13B-V1.2-GPTQ"

config = PeftConfig.from_pretrained("a2ran/GPTeacher-llama2-ko-13b")
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
quantization_config_loading = GPTQConfig(bits=4, disable_exllama=True)

model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config_loading,
                                             torch_dtype=torch.float16, device_map="auto")
model = PeftModel.from_pretrained(model, "a2ran/GPTeacher-llama2-ko-13b")
  • How to Generate Tokens
from transformers import TextStreamer

streamer = TextStreamer(tokenizer)

# your input sentence๊ฐ€ ๋“ค์–ด๊ฐˆ ๊ณณ
sentence = "์‚ฌ๊ณผ๊ฐ€ ๋ชธ์— ์ข‹์€ ์ด์œ ๋ฅผ ์•Œ๋ ค์ฃผ์„ธ์š”."

input = f"""
### input @ {sentence} \n\n### response @"""

output = tokenizer.decode(model.cuda().generate(
    **tokenizer(
        input,
        return_tensors='pt',
    ).to(0),
    max_new_tokens = 2048,
    temperature = 1.2,
    top_p = 0.7,
    early_stopping = True,
    eos_token_id = 2,
    do_sample = True,
    repetition_penalty = 1.1,
    streamer = streamer
)[0]).replace(input+" ", "")
  • Output ์ƒ์„ฑ ์˜ˆ์‹œ
output =
<s> ์•ˆ๋…•ํ•˜์„ธ์š”. ์˜ค๋Š˜์€ ์‚ฌ๊ณผ์˜ ์žฅ์ ์— ๋Œ€ํ•ด ๋ฐฐ์šฐ๊ฒ ์Šต๋‹ˆ๋‹ค. ์‚ฌ๊ณผ๋Š” ํฌ๋„์ฃผ, ์นด๋ฐ”์˜ˆ๋กœ, ์‹œํŠธ๋Ÿฌ์Šค, ํ”ผ๋ฅด๊ณ ํƒ€ํ†จ๋ฆฌ๊ทธ๋ฆญ์Šค ๋“ฑ ์—ฌ๋Ÿฌ ๋‹ค๋ฅธ ์‹๋ฌผ๋“ค๊ณผ ๋น„๊ตํ•˜๋ฉด์„œ ์šฐ๋ฆฌ์˜ ๊ฑด๊ฐ•์„ ์ตœ์ ํ™”ํ•˜๋Š” ์ค‘์š”ํ•œ ์‹๋ฌผ์ž…๋‹ˆ๋‹ค.

์ด์ œ, ์šฐ์„  ์‚ฌ๊ณผ์˜ ์„ฑ๋ถ„์„ ์‚ดํŽด๋ณด๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. ์‚ฌ๊ณผ๋Š” ๊ณ ํ˜ˆ์••์„ ๋‚ฎ์ถ”๋Š” ์—˜๋ฆฌ๊ฐ€ํ†จ๋ฆฐ๊ณผ ํšจ๋ชจ์™€ ๊ฐ™์€ ๋‹จ๋ฐฑ์งˆ, ํ”ผํŠธ์‚ฐ, ํ”ผ๋กœ๋‚˜์‚ฐ ๋“ฑ ์˜์–‘์†Œ๋ฅผ ํ’๋ถ€ํ•˜๊ฒŒ ํ•จ์œ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์„ฑ๋ถ„๋“ค์€ ์šฐ๋ฆฌ์˜ ์ฒด๋‚ด ์กฐ์ง์— ํ•„์ˆ˜์ ์ธ ๋ฌผ์งˆ๋“ค์ด๋ฏ€๋กœ ์‚ฌ๊ณผ๋ฅผ ์„ญ์ทจํ•  ๋งŒํ•œ ์ข‹์€ ์ด์œ  ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค.

๋˜ํ•œ, ์‚ฌ๊ณผ๋Š” ๊ณ ๊ธฐ ์†Œ๊ธˆ๊ณผ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜๋ฉด ๋‹จ๋ฐฑ์งˆ์˜ ์†Œํ™”๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ์–ด์š”. ๋˜ํ•œ ์ง€๋ฐฉ ์†Œ๊ธˆ๊ณผ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜๋ฉด ๋‹น์งˆ์˜ ํก์ˆ˜๋ฅผ ์ฆ๊ฐ€์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์šฐ๋ฆฌ์˜ ์‹ ์ฒด ๊ธฐ๋Šฅ์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค.

๋˜ํ•œ, ์‚ฌ๊ณผ๋Š” ๋น ๋ฅด๊ฒŒ ์†Œํ™”๋˜์–ด ํƒ„์ˆ˜ํ™”๋ฌผ์„ ๊ณต๊ธ‰ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ด ์žฅ์ ์ด์ฃ . ์ด๋Š” ์ฒด๋‚ด ์—๋„ˆ์ง€์›์œผ๋กœ ์ž‘๋™ํ•˜๋Š” ๋Šฅ๋ ฅ์„ ๋†’์—ฌ์ค๋‹ˆ๋‹ค. ์‚ฌ๊ณผ๋ฅผ ์ •๊ตํ•˜๊ฒŒ ๋จน์„ ๊ฒฝ์šฐ ๋ถˆ๊ทœ์น™ํ•œ ํ”ผ์ž„์„ ๋ฐฉ์ง€ํ•˜๊ณ  ์‹์ด๋งž์€ ์šด๋™์„ ์œ ์ง€ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ, ์‚ฌ๊ณผ๋Š” ํ”ผ๋กœ๋‹น๊ณผ ์นดํด๋ผ๋‹ฌ๋ ˆ๊ฐ€ ๋งŽ์ด ๋“ค์–ด ์žˆ์–ด์š”. ์ด๋Š” ๊ทผ์œก์— ๋ฏธ์„ธํ•œ ํž˜์„ ์ œ๊ณตํ•˜์—ฌ ๋†๊ตฌ, ํ…Œ๋‹ˆ์Šค ๋“ฑ ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์šด๋™์„ ์œ„ํ•ด ํ•„์š”ํ•œ ์š”์†Œ์ž…๋‹ˆ๋‹ค. ์ด๋Š” ์šฐ๋ฆฌ์˜ ์šด๋™์„ ๋” ์ž˜ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค.

๋”ฐ๋ผ์„œ, ์‚ฌ๊ณผ๋ฅผ ์„ญ์ทจํ•  ๋•Œ๋Š” ์ฃผ๋กœ ์•„์นจ์ด๋‚˜ ์•„์นจ ์‹์‚ฌ ์ „์— ๋จน๋Š” ๊ฒƒ์ด ์ข‹์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ, ์‚ฌ๊ณผ๋Š” ๋งค์šฐ ํก์น˜๊ธฐ ์‰ฝ๊ณ  ๋‹ค์–‘ํ•œ ์žฌ๋ฃŒ๋ฅผ ๊ฐ€๋ณ€ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ฐฝ๊ณ ์— ๋ณด๊ด€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ฌ๋ฐ”๋ฅธ ์กฐ๋ฆฌ ๋ฐฉ๋ฒ•์„ ์•Œ๊ณ  ์žˆ์–ด์•ผ ํ•˜๋Š”๋ฐ, ์ฃผ๋กœ ํ• ์ธ์œผ๋กœ ๊ฐ€๊ณตํ•˜์—ฌ ์ถฉ๋ถ„ํ•œ ์Œ์‹์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ด์ƒ์œผ๋กœ ์‚ฌ๊ณผ์— ๋Œ€ํ•ด ์•Œ๋ ค๋“œ๋ ธ์Šต๋‹ˆ๋‹ค. ์‚ฌ๊ณผ๋Š” ์šฐ๋ฆฌ์˜ ๊ฑด๊ฐ•์„ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐ ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ž…๋‹ˆ๋‹ค. ๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— ์„ญ์ทจํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.</๋></s>

GPTeacher ํ”„๋กœ์ ํŠธ๋ฅผ ํ†ตํ•ด ์ถ”๊ตฌํ•˜๊ณ ์ž ํ•˜๋Š” ๋ชฉํ‘œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  1. ์˜คํ”ˆ ๋ฐ์ดํ„ฐ์…‹ ์ œ๊ณต : kullm-v2, ko-alpaca ๋ฐ์ดํ„ฐ์…‹์˜ output์„ ๊ฐ•์˜ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ, ๊ธฐ์กด ๋ฐ์ดํ„ฐ์…‹์˜ output๊ณผ ๋”๋ถˆ์–ด extended_output ์นผ๋Ÿผ์„ ์ถ”๊ฐ€ํ•ด ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
  2. PEFTmodel ํ˜น์€ ko-llama2 ๋ชจ๋ธ ์ œ๊ณต : ํ˜„์žฌ ๋ฒ„์ „์€ academic research purpose๋กœ ๋ณ€ํ˜• ๊ฐ€๋Šฅํ•œ wizardLM์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ปค์Šคํ…€ ๋ฐ์ดํ„ฐ์…‹์„ ์ ์šฉํ•œ PEFTmodel ํ•™์Šต๋ฐฉ์‹์„ ํ†ตํ•ด ํŒŒ์ธํŠœ๋‹ํ•œ ๋ฒ„์ „์ž…๋‹ˆ๋‹ค. ์—ฌ๋Ÿฌ ๋ฒ„์ „ ์—…๋ฐ์ดํŠธ๋ฅผ ํ†ตํ•ด, ๋‹ค๋ฅธ ๋ชจ๋ธ๋กœ๋ถ€ํ„ฐ ํŒŒ์ธํŠœ๋‹์„ ํ•  ์ˆ˜ ์žˆ๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ๊ณตํ•˜๊ฑฐ๋‚˜, GPTeacher-ko-llama2 ๋ชจ๋ธ์„ ์ œ์ž‘ํ•ด ์ œ๊ณตํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
  3. ํ˜„์žฌ ์ œ์ž‘์ค‘์ธ ๋ฐ์ดํ„ฐ์…‹ ์˜ˆ์‹œ : https://huggingface.co/datasets/a2ran/ex_dataset

ํ˜„์žฌ ์‚ฌ์šฉ๋ชจ๋ธ : WizardLM-13B-v1.2

/์˜์–ด๊ถŒ ๋ฐ์ดํ„ฐ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํ•™์Šตํ•œ WizardLM ๋ชจ๋ธ์„ ํŒŒ์ธํŠœ๋‹ ํ•˜์˜€๊ธฐ์— generalํ•œ ํ•œ๊ตญ ์ •๋ณด์— ๊ด€ํ•œ ์งˆ๋ฌธ์— ๋ฏธ์ˆ™ํ•ฉ๋‹ˆ๋‹ค./

Model Checkpoint Paper MT-Bench AlpacaEval GSM8k HumanEval Demo License
WizardLM-70B-V1.0 ๐Ÿค— HF Link ๐Ÿ“ƒComing Soon 7.78 92.91% 77.6% 50.6 Llama 2 License
WizardLM-13B-V1.2 ๐Ÿค— HF Link 7.06 89.17% 55.3% 36.6 Demo Llama 2 License

ํ–ฅํ›„ ์ง„ํ–‰ ๋ฐฉํ–ฅ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค

  1. more custom dataset์œผ๋กœ ํŒŒ์ธํŠœ๋‹
  2. ์—ฌ๋Ÿฌ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ชจ๋ธ์— ๋Œ€ํ•ด PEFT learning ์ง„ํ–‰ (30B, 7B, 70B...)
  3. ko-llama2 ๋ชจ๋ธ์— ๋Œ€ํ•ด ํŒŒ์ธํŠœ๋‹

2. Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: gptq
  • bits: 4
  • tokenizer: None
  • dataset: None
  • group_size: 128
  • damp_percent: 0.1
  • desc_act: False
  • sym: True
  • true_sequential: True
  • use_cuda_fp16: False
  • model_seqlen: None
  • block_name_to_quantize: None
  • module_name_preceding_first_block: None
  • batch_size: 1
  • pad_token_id: None
  • disable_exllama: True
  • max_input_length: None

Framework versions

  • PEFT 0.6.0.dev0

@misc{xu2023wizardlm, title={WizardLM: Empowering Large Language Models to Follow Complex Instructions}, author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang}, year={2023}, eprint={2304.12244}, archivePrefix={arXiv}, primaryClass={cs.CL} }