ppo-LunarLander-v2 / config.json
a6687543's picture
Upload PPO LunarLander-v2 trained agent
ae9e31c
raw
history blame
13.9 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3778da4670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3778da4700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3778da4790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3778da4820>", "_build": "<function ActorCriticPolicy._build at 0x7f3778da48b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3778da4940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3778da49d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3778da4a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3778da4af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3778da4b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3778da4c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3778da4ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3778f7fcc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 344042492, "action_noise": null, "start_time": 1684372995405168368, "learning_rate": 0.0003, "tensorboard_log": "tensorboard-logs/ppo-LunarLander-v2-stable-reward-penalize-time/LunarLander-v2", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALP0H71IK5i6IrErs16NR69wWD85Lj/PMwAAgD8AAIA/mim0usMFSLqT1+S8do7mPM8oFDsfDcU9AACAPwAAgD/N88Q8AT6nPnljqL1hjzW/Et28PfzvSr0AAAAAAAAAAM0rn731O5c/MiwpvqwpSr9fJxK+UMgIvgAAAAAAAAAAM0mcvNsTorwCsLO+kA2evTynUT2yvBm/AACAPwAAgD8AxEa8Cv0lu/buor0zIAQ8JvZpPOZo7rwAAIA/AACAP9reYr7slms/8810vkauIL994Ai/iDW8vQAAAAAAAAAAZpX5vFwvSbqeCMYzMY7QLMbhnbt/ssGzAACAPwAAgD/Nm8o8SHOPuo7M3jpeooI10LtQN1sQAboAAIA/AACAP7ueh75GV5I/+DdcviuOGr98RTK/et4xvQAAAAAAAAAA5tECviAK7D6ofrA9pd5Bv4Dhdr6tdeE9AAAAAAAAAAAN7iQ+3qBYP3jbAz6cTgy/BSoAP1X+Dj4AAAAAAAAAAE3hWr22LFm82ApaPg9Niz3QsqC997GSvAAAgD8AAIA/TaovvXuc+rrncaa8tuWGPJo7pLuIcGo9AACAPwAAgD/Nmmi9NokWvGhATrpAYqY7Wc13vZJmnDwAAIA/AACAP+20Ab7JsCc+7s+wPtstFb/d2DC8CpyePgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHNxX8wYciMAWyUS6SMAXSUR0CJBV6Q/5ckdX2UKGgGR0ByFz+qBEroaAdLh2gIR0CJO1rqt5lfdX2UKGgGR0Bxx99roGILaAdLkmgIR0CJO2q+ajN7dX2UKGgGR0BvpMkD6nBMaAdLmGgIR0CJO3zErGzbdX2UKGgGR0BwCPZGrjo7aAdLkGgIR0CJO+Jm/WUbdX2UKGgGR0Byb9hG6PKdaAdLhmgIR0CJPD7gKnejdX2UKGgGR0BwbPqzJIUbaAdLoWgIR0CJPG34sVcmdX2UKGgGR0BwBAwIt16maAdLnGgIR0CJPJ2nKnvVdX2UKGgGR0Bxdoyj59E1aAdLhmgIR0CJPKq94/u9dX2UKGgGR0B0PdjBl+VkaAdLt2gIR0CJPT47A+INdX2UKGgGR0Bx4JkauOjqaAdLvmgIR0CJPbpVS4vwdX2UKGgGR0BxVLWattALaAdLp2gIR0CJPgvB7/n4dX2UKGgGR0BxuiNWEK3NaAdLo2gIR0CJPgoAn2IwdX2UKGgGR0BysJIz3yqdaAdLsGgIR0CJPlwCKaXsdX2UKGgGR0Bxiph1DBuXaAdLk2gIR0CJPnlUZNwjdX2UKGgGR0ByxQBGQSzxaAdLt2gIR0CJQJJwsGxEdX2UKGgGR0BxX8SamXPaaAdLpGgIR0CJQL9RaX8gdX2UKGgGR0Bwk3EXLvCuaAdLkWgIR0CJQUzDXOGCdX2UKGgGR0BxsIQ04zacaAdLnWgIR0CJQgiB5HEudX2UKGgGR0Byh6psGgSOaAdLiGgIR0CJQmg/TspodX2UKGgGR0ByetJAdGRWaAdLo2gIR0CJQtwOOKfndX2UKGgGR0Bz2x/lQuVYaAdLsWgIR0CJQv0U47zTdX2UKGgGR0BwTxCMPz4DaAdLl2gIR0CJQzigkC3gdX2UKGgGR0Bxn1XHR1HOaAdLoWgIR0CJQzKdxyXEdX2UKGgGR0ByMFwYLsrvaAdLimgIR0CJQ11dPci4dX2UKGgGR0BPK1Rk3CKraAdLemgIR0CJQ5IpYs/ZdX2UKGgGR0Bz7fL0SRKZaAdLuWgIR0CJRGhllK9PdX2UKGgGR0BwLdjwx33YaAdLlmgIR0CJRRYRNATqdX2UKGgGR0Bzax/XoTwlaAdLsGgIR0CJRX+l0o0AdX2UKGgGR0ByXnwc5sCUaAdLsWgIR0CJRfY6GQCCdX2UKGgGR0Byycc2itaIaAdLqmgIR0CJRhsMy8BddX2UKGgGR0By0ecBltj1aAdLomgIR0CJSAqtHQQddX2UKGgGR0B0Qx+LFXJYaAdLpmgIR0CJSGGucMEzdX2UKGgGR0Bw6GTINmUXaAdLi2gIR0CJSS9IwudxdX2UKGgGR0Bw4imJm/WUaAdLsWgIR0CJSWRf4REndX2UKGgGR0Bzk5EXtShraAdLm2gIR0CJSiBVdX1bdX2UKGgGR0BzW6+sYEW7aAdLtmgIR0CJSkw35vcadX2UKGgGR0BxxQnw5NoKaAdLoGgIR0CJSoDOC5EudX2UKGgGR0ByBVcpsoDxaAdLtmgIR0CJSpxJd0JXdX2UKGgGR0BzFMjfNzKcaAdLsmgIR0CJSxyLAHmjdX2UKGgGR0BzZQ/bCaZyaAdLwGgIR0CJS2vt+kP+dX2UKGgGR0BzQVEE1VHXaAdLr2gIR0CJS2CwKSgXdX2UKGgGR0ByU9n003wTaAdLj2gIR0CJS4wqy4WldX2UKGgGR0ByK0otthuwaAdLq2gIR0CJTALyc0+DdX2UKGgGR0BycbmPo3aSaAdLr2gIR0CJTdWxyGSIdX2UKGgGR0BNs0tRNyo5aAdLaWgIR0CJTepPRArydX2UKGgGR0B0BU22oegdaAdLwGgIR0CJTglUp/gBdX2UKGgGR0BzFC32EkB0aAdLuGgIR0CJTiYUnG83dX2UKGgGR0BzGP6O5rgwaAdLnmgIR0CJTwqFyq+8dX2UKGgGR0Bzgd/hESdwaAdLuGgIR0CJUG5TZQHidX2UKGgGR0BxBndtVJcxaAdLj2gIR0CJUMplSS/1dX2UKGgGR0BuyNszl90BaAdLkWgIR0CJUMbVjI7vdX2UKGgGR0BzkoWGh24eaAdLoWgIR0CJURpRoAXEdX2UKGgGR0Bz9//FR51OaAdLtWgIR0CJURF3IMjNdX2UKGgGR0Bwnjy4FzMiaAdLjmgIR0CJUTuWKMvRdX2UKGgGR0Bv0sYXO4XoaAdLomgIR0CJUUsT37DVdX2UKGgGR0BxvFjPOY6XaAdLmmgIR0CJUeoJAt4BdX2UKGgGR0BxiolqrR0EaAdLjmgIR0CJUgHcDbJwdX2UKGgGR0Bw7km9g4OuaAdLnmgIR0CJUgQVbiZOdX2UKGgGR0ByjewPiDNAaAdLsGgIR0CJUsxbB42TdX2UKGgGR0Byu3W6K+BZaAdLkmgIR0CJU8PDpC8fdX2UKGgGR0Bwb935eqrBaAdLnGgIR0CJVFbLU1AJdX2UKGgGR0Bzfqg6EJ0GaAdLpmgIR0CJVKQIUrTZdX2UKGgGR0BxcK4uscQzaAdLlmgIR0CJVO7Ackt3dX2UKGgGR0Bx9kwdsBQvaAdLtWgIR0CJVV9c8kledX2UKGgGR0BwUoIdELH/aAdLmmgIR0CJVnNEgGKRdX2UKGgGR0BwaKdy1eByaAdLkWgIR0CJVsCHRCyAdX2UKGgGR0Bwr9rO7g89aAdLnmgIR0CJV5MINVindX2UKGgGR0ByQoSmIj4YaAdLqmgIR0CJV5HUc4o7dX2UKGgGR0Bv3SPZIxxlaAdLo2gIR0CJV77RfF72dX2UKGgGR0Bw/lqGlANYaAdLlGgIR0CJWA/VRUFTdX2UKGgGR0BxKpNUOuq4aAdLmWgIR0CJWCnb7CSBdX2UKGgGR0BynHfuTibVaAdLsGgIR0CJWCkTpPhydX2UKGgGR0Bz98GKQ7tBaAdLu2gIR0CJWF5LRKHxdX2UKGgGR0BxIiYeDFqBaAdLoWgIR0CJWX/ACW/rdX2UKGgGR0By+L0OEug6aAdLuWgIR0CJWZOARTS9dX2UKGgGR0ByTBl/YrauaAdLqmgIR0CJWt72L5ymdX2UKGgGR0BylCV9nbqRaAdLnmgIR0CJW1cZccENdX2UKGgGR0ByEabWmP5paAdLn2gIR0CJW7hESdvsdX2UKGgGR0BzNjNRm9QGaAdLtWgIR0CJXBvTgEU1dX2UKGgGR0Bwxak8A7xNaAdLs2gIR0CJXUeq7yxzdX2UKGgGR0BygVDa4+bFaAdLm2gIR0CJXae0Xxe+dX2UKGgGR0By6S9CeEqUaAdLjmgIR0CJXeEmICU5dX2UKGgGR0ByOGH0se4kaAdLjmgIR0CJXg4ZMtbtdX2UKGgGR0BzvEjzI3iraAdLrGgIR0CJXinTAnD0dX2UKGgGR0BwfkTviLl4aAdLiWgIR0CJXj9jPOY6dX2UKGgGR0ByqqM0gr6MaAdLomgIR0CJXsJxeb/fdX2UKGgGR0BymcbsF+uvaAdLomgIR0CJXzIkqto0dX2UKGgGR0B0asJ0GNaRaAdLtmgIR0CJYBnSv1UVdX2UKGgGR0BxAFE3Kji5aAdLnGgIR0CJYHuJk5IZdX2UKGgGR0ByOp8JD3M7aAdLwmgIR0CJYM4yXUpedX2UKGgGR0BxgPZmI0qIaAdLqGgIR0CJYOiTt9hJdX2UKGgGR0BzW44BFNL2aAdLn2gIR0CJYeb6P8yfdX2UKGgGR0BwRFNSIgvEaAdLj2gIR0CJYf+m3vx6dX2UKGgGR0BxbRkGzKLbaAdLrGgIR0CJY6r0aqCIdX2UKGgGR0Bx8j0QK8cuaAdLimgIR0CJY9g7YChfdX2UKGgGR0Bwhfin5zo2aAdLm2gIR0CJZAomXw9adX2UKGgGR0Bz6xGe+VTraAdLzGgIR0CJZHZbILgGdX2UKGgGR0BwmpTER8MNaAdLnmgIR0CJZI+kgwGodX2UKGgGR0BwGc2gnMMaaAdLlmgIR0CJZJyuIRAbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 13053, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRy9ob21lL21hcmt1cy9zcmMvYWkvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgUMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxHL2hvbWUvbWFya3VzL3NyYy9haS9zdGFibGUtYmFzZWxpbmVzMy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVYAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVfgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRXgrUxb2HLoJ5cOWc/TAqqQCMA2luY5SKEDelaqfryv5maWKS+NOk72d1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}