German_Semantic_STS_V2
Note: Check out my new, updated models: German_Semantic_V3 and V3b!
This model creates german embeddings for semantic use cases.
This is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Special thanks to deepset for providing the model gBERT-large and also to Philip May for the Translation of the dataset and chats about the topic.
Model score after fine-tuning scores best, compared to these models:
Model Name | Spearman |
---|---|
xlm-r-distilroberta-base-paraphrase-v1 | 0.8079 |
xlm-r-100langs-bert-base-nli-stsb-mean-tokens | 0.7877 |
xlm-r-bert-base-nli-stsb-mean-tokens | 0.7877 |
roberta-large-nli-stsb-mean-tokens | 0.6371 |
T-Systems-onsite/ german-roberta-sentence-transformer-v2 |
0.8529 |
paraphrase-multilingual-mpnet-base-v2 | 0.8355 |
T-Systems-onsite/ cross-en-de-roberta-sentence-transformer |
0.8550 |
aari1995/German_Semantic_STS_V2 | 0.8626 |
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('aari1995/German_Semantic_STS_V2')
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('aari1995/German_Semantic_STS_V2')
model = AutoModel.from_pretrained('aari1995/German_Semantic_STS_V2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 1438 with parameters:
{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss
with parameters:
{'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True}
Parameters of the fit()-Method:
{
"epochs": 4,
"evaluation_steps": 500,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 5e-06
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 576,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors
The base model is trained by deepset. The dataset was published / translated by Philip May. The model was fine-tuned by Aaron Chibb.
- Downloads last month
- 14,893
Dataset used to train aari1995/German_Semantic_STS_V2
Spaces using aari1995/German_Semantic_STS_V2 4
Collection including aari1995/German_Semantic_STS_V2
Evaluation results
- accuracy on MTEB AmazonCounterfactualClassificationtest set self-reported67.002
- accuracy on MTEB AmazonCounterfactualClassificationvalidation set self-reported68.433
- accuracy on MTEB AmazonReviewsClassificationtest set self-reported39.092
- accuracy on MTEB AmazonReviewsClassificationvalidation set self-reported39.146
- v_measure on MTEB BlurbsClusteringP2Ptest set self-reported38.681
- v_measure on MTEB BlurbsClusteringS2Stest set self-reported17.624
- ndcg_at_10 on MTEB GermanDPRtest set self-reported72.921
- mrr_at_5 on MTEB GermanQuAD-Retrievaltest set self-reported85.316
- cos_sim_spearman on MTEB GermanSTSBenchmarktest set self-reported84.677
- cos_sim_spearman on MTEB GermanSTSBenchmarkvalidation set self-reported88.049