🧩 Configuration
slices:
- sources:
- model: liminerity/M7-7b
layer_range: [0, 32]
- model: AurelPx/Percival_01-7b-slerp
layer_range: [0, 32]
merge_method: slerp
base_model: liminerity/M7-7b
parameters:
t:
- filter: self_attn
value: [0.3971503740486436, 0.6649148917405439, 0.9727902590850609, 0.24826875048537567, 0.9603913534901606]
- filter: mlp
value: [0.6028496259513564, 0.33508510825945614, 0.027209740914939107, 0.7517312495146243, 0.03960864650983942]
- value: 0.7872855893513945
dtype: bfloat16
random_seed: 0
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "aaron-di/Yamshadowexperiment28M70.4-0.66-0.97-0.25-0.96-0.79-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.