See axolotl config
axolotl version: 0.12.2
base_model: Qwen/Qwen3-0.6B
# Automatically upload checkpoint and final model to HF
hub_model_id: abdullahmeda/listwise-rerank-qwen3-600m-ds1-9fh4jd8e6
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: qwen3
datasets:
- path: kaggle-map/listwise-rerank
type: chat_template
split: train
test_datasets:
- path: kaggle-map/listwise-rerank
type: chat_template
split: val
streaming: true
dataset_processes: 32
dataset_prepared_path: last_run_prepared
output_dir: ./outputs/listwise-rerank-qwen3-600m-ds1-9fh4jd8e6
sequence_len: 1280
sample_packing: true
eval_sample_packing: false
deepspeed: deepspeed_configs/zero1.json
wandb_project: map-math-misconceptions
wandb_entity:
wandb_watch:
wandb_name: listwise-rerank-qwen3-600m-ds1-9fh4jd8e6
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 16
num_epochs: 1
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 5e-6
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 10
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 21
saves_per_epoch: 21
weight_decay: 0.01
save_first_step: true
listwise-rerank-qwen3-600m-ds1-9fh4jd8e6
This model is a fine-tuned version of Qwen/Qwen3-0.6B on the kaggle-map/listwise-rerank dataset. It achieves the following results on the evaluation set:
- Loss: 0.1884
- Memory/max Mem Active(gib): 43.13
- Memory/max Mem Allocated(gib): 43.13
- Memory/device Mem Reserved(gib): 50.69
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- total_eval_batch_size: 64
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 24
- training_steps: 248
Training results
| Training Loss | Epoch | Step | Validation Loss | Mem Active(gib) | Mem Allocated(gib) | Mem Reserved(gib) |
|---|---|---|---|---|---|---|
| No log | 0 | 0 | 10.3241 | 31.76 | 31.76 | 32.02 |
| 7.3879 | 0.0483 | 12 | 0.9112 | 43.13 | 43.13 | 50.69 |
| 0.716 | 0.0967 | 24 | 0.4508 | 43.13 | 43.13 | 50.69 |
| 0.4393 | 0.1450 | 36 | 0.3112 | 43.13 | 43.13 | 50.69 |
| 0.3042 | 0.1934 | 48 | 0.2664 | 43.13 | 43.13 | 50.69 |
| 0.2363 | 0.2417 | 60 | 0.2359 | 43.13 | 43.13 | 50.69 |
| 0.1976 | 0.2900 | 72 | 0.2041 | 43.13 | 43.13 | 50.69 |
| 0.1743 | 0.3384 | 84 | 0.1951 | 43.13 | 43.13 | 50.69 |
| 0.161 | 0.3867 | 96 | 0.1836 | 43.13 | 43.13 | 50.69 |
| 0.1528 | 0.4350 | 108 | 0.1788 | 43.13 | 43.13 | 50.69 |
| 0.1367 | 0.4834 | 120 | 0.1721 | 43.13 | 43.13 | 50.69 |
| 0.1169 | 0.5317 | 132 | 0.1740 | 43.13 | 43.13 | 50.69 |
| 0.1136 | 0.5801 | 144 | 0.1701 | 43.13 | 43.13 | 50.69 |
| 0.1066 | 0.6284 | 156 | 0.1699 | 43.13 | 43.13 | 50.69 |
| 0.1079 | 0.6767 | 168 | 0.1811 | 43.13 | 43.13 | 50.69 |
| 0.0897 | 0.7251 | 180 | 0.1827 | 43.13 | 43.13 | 50.69 |
| 0.0883 | 0.7734 | 192 | 0.1869 | 43.13 | 43.13 | 50.69 |
| 0.0818 | 0.8218 | 204 | 0.1847 | 43.13 | 43.13 | 50.69 |
| 0.0807 | 0.8701 | 216 | 0.1859 | 43.13 | 43.13 | 50.69 |
| 0.0764 | 0.9184 | 228 | 0.1873 | 43.13 | 43.13 | 50.69 |
| 0.0722 | 0.9668 | 240 | 0.1884 | 43.13 | 43.13 | 50.69 |
Framework versions
- Transformers 4.55.2
- Pytorch 2.6.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 10