metadata
base_model: UKPLab/triple-encoders-dailydialog
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:985575
- loss:CosineSimilarityTripleEncoderLoss
- loss:ContrastiveLoss
widget:
- source_sentence: A small white and tan dog licking up peanut butter.
sentences:
- Someone is making dinner in the kitchen.
- >-
Someone put peanut butter on the dog's nose because that's always good
for a laugh.
- Two dogs are eating food from a bowl in a kitchen
- source_sentence: A person in a heavy coat shoveling snow.
sentences:
- Someone is holding a rocket launcher.
- An old person is shoveling snow.
- The private bar's pro bono work was supported by the judges.
- source_sentence: '[B1] [O] [BEFORE] '
sentences:
- '[B2] [E] [BEFORE] '
- '[B2] [O] [BEFORE] e'
- '[AFTER] u'
- source_sentence: '[B1] [E] [BEFORE] e'
sentences:
- '[B2] [O] [BEFORE] :'
- '[B2] [O] [BEFORE] t'
- '[AFTER] C'
- source_sentence: '[B1] [O] [BEFORE] s'
sentences:
- '[B2] [O] [BEFORE] o'
- '[B2] [E] [BEFORE] '
- '[AFTER] u'
SentenceTransformer based on UKPLab/triple-encoders-dailydialog
This is a sentence-transformers model finetuned from UKPLab/triple-encoders-dailydialog. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: UKPLab/triple-encoders-dailydialog
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("abhiraj1/eval_triple_encoder")
# Run inference
sentences = [
'[B1] [O] [BEFORE] s',
'[B2] [E] [BEFORE] ',
'[AFTER] u',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Datasets
Unnamed Dataset
- Size: 43,506 training samples
- Columns:
sentence_0
,sentence_1
,sentence_2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 label type string string string float details - min: 5 tokens
- mean: 5.86 tokens
- max: 6 tokens
- min: 5 tokens
- mean: 5.84 tokens
- max: 6 tokens
- min: 3 tokens
- mean: 3.81 tokens
- max: 4 tokens
- min: 0.0
- mean: 0.2
- max: 1.0
- Samples:
sentence_0 sentence_1 sentence_2 label [B1] [O] [BEFORE]
[B2] [E] [BEFORE]
[AFTER] u
0.0
[B1] [E] [BEFORE] e
[B2] [O] [BEFORE] :
[AFTER] C
0.0
[B1] [O] [BEFORE] s
[B2] [E] [BEFORE]
[AFTER] u
0.6000000000000001
- Loss:
triple_encoders.losses.CosineSimilarityTripleEncoderLoss.CosineSimilarityTripleEncoderLoss
Unnamed Dataset
- Size: 942,069 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 5 tokens
- mean: 20.26 tokens
- max: 182 tokens
- min: 4 tokens
- mean: 11.94 tokens
- max: 31 tokens
- 0: ~32.40%
- 1: ~33.70%
- 2: ~33.90%
- Samples:
sentence_0 sentence_1 label And the reason Lincoln and his goons had shown up? Well, not everybody was full of respect.
Lincoln didn't show up.
0
a rally car driving down a roadway with people on the side taking pictures
People on the side of road taking picture of a rally car driving down
1
The dog is wearing a purple cape.
THE ANIMAL IS IN A PAGEANT
2
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0919 | 500 | 0.0838 |
0.1838 | 1000 | 0.0474 |
0.2757 | 1500 | 0.0414 |
0.3676 | 2000 | 0.0417 |
0.4596 | 2500 | 0.042 |
0.5515 | 3000 | 0.0423 |
0.6434 | 3500 | 0.0408 |
0.7353 | 4000 | 0.0427 |
0.8272 | 4500 | 0.0414 |
0.9191 | 5000 | 0.0415 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}