|
--- |
|
tags: autonlp |
|
language: en |
|
widget: |
|
- text: "I love AutoNLP 🤗" |
|
datasets: |
|
- abhishek/autonlp-data-bbc-news-classification |
|
co2_eq_emissions: 5.448567309047846 |
|
--- |
|
|
|
# Model Trained Using AutoNLP |
|
|
|
- Problem type: Multi-class Classification |
|
- Model ID: 37229289 |
|
- CO2 Emissions (in grams): 5.448567309047846 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.07081354409456253 |
|
- Accuracy: 0.9867109634551495 |
|
- Macro F1: 0.9859067529980614 |
|
- Micro F1: 0.9867109634551495 |
|
- Weighted F1: 0.9866417220968429 |
|
- Macro Precision: 0.9868771404595043 |
|
- Micro Precision: 0.9867109634551495 |
|
- Weighted Precision: 0.9869289511551576 |
|
- Macro Recall: 0.9853173241852486 |
|
- Micro Recall: 0.9867109634551495 |
|
- Weighted Recall: 0.9867109634551495 |
|
|
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-bbc-news-classification-37229289 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("abhishek/autonlp-bbc-news-classification-37229289", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-bbc-news-classification-37229289", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoNLP", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |