Edit model card

Model Trained Using AutoTrain

  • Problem type: Multi-class Classification
  • Model ID: 9705278
  • CO2 Emissions (in grams): 1.9138035947108896

Validation Metrics

  • Loss: 0.2559724063922962
  • Accuracy: 0.8666666666666667
  • Macro F1: 0.8666666666666668
  • Micro F1: 0.8666666666666667
  • Weighted F1: 0.8666666666666667
  • Macro Precision: 0.8666666666666667
  • Micro Precision: 0.8666666666666667
  • Weighted Precision: 0.8666666666666667
  • Macro Recall: 0.8666666666666667
  • Micro Recall: 0.8666666666666667
  • Weighted Recall: 0.8666666666666667

Usage

import json
import joblib
import pandas as pd

model = joblib.load('model.joblib')
config = json.load(open('config.json'))

features = config['features']

# data = pd.read_csv("data.csv")
data = data[features]
data.columns = ["feat_" + str(col) for col in data.columns]

predictions = model.predict(data)  # or model.predict_proba(data)
Downloads last month
6
Inference Examples
Inference API (serverless) does not yet support transformers models for this pipeline type.

Dataset used to train abhishek/autotrain-iris-xgboost